IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.02535.html
   My bibliography  Save this paper

Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis

Author

Listed:
  • Philippe Goulet Coulombe
  • Maximilian Gobel

Abstract

On September 15th 2020, Arctic sea ice extent (SIE) ranked second-to-lowest in history and keeps trending downward. The understanding of how feedback loops amplify the effects of external CO2 forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. The VARCTIC is a parsimonious compromise between full-blown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our completely unconditional forecast has SIE hitting 0 in September by the 2060's. Impulse response functions reveal that anthropogenic CO2 emission shocks have an unusually durable effect on SIE -- a property shared by no other shock. We find Albedo- and Thickness-based feedbacks to be the main amplification channels through which CO2 anomalies impact SIE in the short/medium run. Further, conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of CO2 emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050's. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0.

Suggested Citation

  • Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2005.02535
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.02535
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Christopher A. Sims, 2012. "Statistical Modeling of Monetary Policy and Its Effects," American Economic Review, American Economic Association, vol. 102(4), pages 1187-1205, June.
    4. Francis X. Diebold & Glenn D. Rudebusch, 2019. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," PIER Working Paper Archive 19-021, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Bachmann, Rüdiger & Sims, Eric R., 2012. "Confidence and the transmission of government spending shocks," Journal of Monetary Economics, Elsevier, vol. 59(3), pages 235-249.
    6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    7. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    8. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    9. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    10. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575.
    11. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    12. Dieppe, Alistair & van Roye, Björn & Legrand, Romain, 2016. "The BEAR toolbox," Working Paper Series 1934, European Central Bank.
    13. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    14. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    15. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    16. Choi,In, 2015. "Almost All about Unit Roots," Cambridge Books, Cambridge University Press, number 9781107482500, October.
    17. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 299-307, October.
    18. Malte F. Stuecker & Cecilia M. Bitz & Kyle C. Armour & Cristian Proistosescu & Sarah M. Kang & Shang-Ping Xie & Doyeon Kim & Shayne McGregor & Wenjun Zhang & Sen Zhao & Wenju Cai & Yue Dong & Fei-Fei , 2018. "Polar amplification dominated by local forcing and feedbacks," Nature Climate Change, Nature, vol. 8(12), pages 1076-1081, December.
    19. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    20. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study: Response," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 313-315, October.
    21. Michael Sigmond & John C. Fyfe & Neil C. Swart, 2018. "Ice-free Arctic projections under the Paris Agreement," Nature Climate Change, Nature, vol. 8(5), pages 404-408, May.
    22. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    23. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    24. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    25. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    26. Sims, Christopher A. & Zha, Tao, 2006. "Does Monetary Policy Generate Recessions?," Macroeconomic Dynamics, Cambridge University Press, vol. 10(2), pages 231-272, April.
    27. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    28. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    29. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    30. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    31. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    32. Steven C. Amstrup & Eric T. DeWeaver & David C. Douglas & Bruce G. Marcot & George M. Durner & Cecilia M. Bitz & David A. Bailey, 2010. "Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence," Nature, Nature, vol. 468(7326), pages 955-958, December.
    33. Aiguo Dai & Dehai Luo & Mirong Song & Jiping Liu, 2019. "Arctic amplification is caused by sea-ice loss under increasing CO2," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice:Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," PIER Working Paper Archive 22-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Philippe Goulet Coulombe & Maximilian Göbel, 2021. "On Spurious Causality, CO 2 , and Global Temperature," Econometrics, MDPI, vol. 9(3), pages 1-18, September.
    3. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "On Spurious Causality, CO2, and Global Temperature," Papers 2103.10605, arXiv.org.
    4. Diebold, Francis X. & Göbel, Maximilian, 2022. "A benchmark model for fixed-target Arctic sea ice forecasting," Economics Letters, Elsevier, vol. 215(C).
    5. Marina Friedrich & Luca Margaritella & Stephan Smeekes, 2023. "High-Dimensional Granger Causality for Climatic Attribution," Papers 2302.03996, arXiv.org, revised Jun 2024.
    6. Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe, 2022. "Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for Feature-Engineered Linear Regression and Machine Learning Models," Working Papers 22-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    7. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    3. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    6. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    7. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    8. Ralf Brüggemann & Christian Kascha, 2017. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2017-06, Department of Economics, University of Konstanz.
    9. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    10. Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    11. MOLTENI, Francesco, PAPPA, Evi, 2017. "The Combination of Monetary and Fiscal Policy Shocks: A TVP-FAVAR Approach," Economics Working Papers MWP 2017/13, European University Institute.
    12. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    13. Giacomo Rella, 2021. "The Fed, housing and household debt over time," Department of Economics University of Siena 850, Department of Economics, University of Siena.
    14. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    15. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.
    16. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    17. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    18. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    19. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    20. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    21. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    22. Alloza, Mario & Sanz, Carlos, 2019. "Dynamic Effects of Persistent Shocks," UC3M Working papers. Economics 29187, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.02535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.