IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5591-d809619.html
   My bibliography  Save this article

Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection

Author

Listed:
  • Chuya Wang

    (Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China)

  • Minghu Ding

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Yuande Yang

    (Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China)

  • Ting Wei

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Tingfeng Dou

    (College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Shipping volumes in the Northwest Passage are likely to increase under climate change due to the distance advantage over traditional routes and the special strategic location of the Arctic. However, the harsh environment and poor channel conditions may pose a considerable risk to ship navigation. To ensure the safety of ships, understand the navigability of the route, and plan the sustainable use of the Northwest Passage, it is crucial to provide a quantitative risk assessment. Here, we present an analysis of several natural risks faced by ships in the Northwest Passage based on available datasets and use climate model simulations to project the navigability changes. The results showed that: (1) The sea-ice risk to ships in the Northwest Passage has been significantly reduced over the period 1979–2019, and the risk for Polar Class 6 (PC6) ships has decreased more rapidly than for general open-water (OW) ships. The difference in ice-breaking capacity further affects the seaworthy season, with the second seaworthy month being August for OW ships and October for PC6 ships, in addition to the commonly best September. (2) Low visibility is a more common form of adverse weather than strong wind for navigation in the Northwest Passage, mainly on the northern route, although pilotage conditions appear to be improving in September. (3) According to the comprehensive risk map, the distribution of risk is dominated by sea ice. The southern route of the Northwest Passage is superior to the northern route in terms of both sea ice and weather conditions, but there is a risk of shallow water. (4) For the northern route, which has greater transport potential, projections suggest that the sea-ice risk will be steadily lower than any extreme light ice year observed historically whether for the ship class OW or PC6 by 2050, with an increase of 50–80 navigable days, and the navigable period could be from June to January of the following year for PC6 ships by 2100. Our results provide valuable information for ships planning to pass through the Northwest Passage.

Suggested Citation

  • Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5591-:d:809619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glen P. Peters & Robbie M. Andrew & Tom Boden & Josep G. Canadell & Philippe Ciais & Corinne Le Quéré & Gregg Marland & Michael R. Raupach & Charlie Wilson, 2013. "The challenge to keep global warming below 2 °C," Nature Climate Change, Nature, vol. 3(1), pages 4-6, January.
    2. Katherine R. Barnhart & Christopher R. Miller & Irina Overeem & Jennifer E. Kay, 2016. "Mapping the future expansion of Arctic open water," Nature Climate Change, Nature, vol. 6(3), pages 280-285, March.
    3. Ye Zhang & Hao Hu & Lei Dai, 2020. "Real-time assessment and prediction on maritime risk state on the Arctic Route," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(3), pages 352-370, April.
    4. Maurice Danard & Adam Munro & Tad Murty, 2003. "Storm Surge Hazard in Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 407-434, March.
    5. Megan Drewniak & Dimitrios Dalaklis & Anastasia Christodoulou & Rebecca Sheehan, 2021. "Ice-Breaking Fleets of the United States and Canada: Assessing the Current State of Affairs and Future Plans," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    6. Somanathan, Saran & Flynn, Peter & Szymanski, Jozef, 2009. "The Northwest Passage: A simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 127-135, February.
    7. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly Kapsar & Grant Gunn & Lawson Brigham & Jianguo Liu, 2023. "Mapping vessel traffic patterns in the ice-covered waters of the Pacific Arctic," Climatic Change, Springer, vol. 176(7), pages 1-17, July.
    2. Xue Shi & Yu Wang & Haotian You & Jianjun Chen, 2023. "Sea Ice Extraction in SAR Images via a Spatially Constrained Gamma Mixture Model," Sustainability, MDPI, vol. 15(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. B. Cornish & H. L. Johnson & R. D. C. Mallett & J. Dörr & Y. Kostov & A. E. Richards, 2022. "Rise and fall of sea ice production in the Arctic Ocean’s ice factories," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Dai, Lei & Jing, Danyue & Hu, Hao & Wang, Zhaojing, 2021. "An environmental and techno-economic analysis of transporting LNG via Arctic route," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 56-71.
    3. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Rebecca Sheehan & Dimitrios Dalaklis & Anastasia Christodoulou & Megan Drewniak & Peter Raneri & Angelos Dalaklis, 2021. "The Northwest Passage in the Arctic: A Brief Assessment of the Relevant Marine Transportation System and Current Availability of Search and Rescue Services," Logistics, MDPI, vol. 5(2), pages 1-15, April.
    5. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. L. Feng & William Hong, 2008. "A quantitative expression for the magnitude and intensity of disaster of storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 11-18, April.
    7. Lasserre, Frédéric & Pelletier, Sébastien, 2011. "Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1465-1473.
    8. Morven Muilwijk & Tore Hattermann & Torge Martin & Mats A. Granskog, 2024. "Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jules Hugot & Camilo Umana Dajud, 2017. "Breaking Away from Icebreakers: The Effect of Melting Distances on Trade and Welfare," Working Papers 2017-24, CEPII research center.
    10. Clifford Chuwah & Twan Noije & Detlef Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    11. Pedro Macedo & Mara Madaleno, 2022. "Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    12. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    13. Jean-Fran�ois Pelletier & Emmanuel Guy, 2015. "Supply and demand for the Eastern Canadian Arctic Sealift," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(7), pages 669-681, October.
    14. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    15. Hasan Sohail & Virpi Kollanus & Pekka Tiittanen & Alexandra Schneider & Timo Lanki, 2020. "Heat, Heatwaves and Cardiorespiratory Hospital Admissions in Helsinki, Finland," IJERPH, MDPI, vol. 17(21), pages 1-11, October.
    16. Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    17. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Sibul, Gleb & Jin, Jian Gang, 2021. "Evaluating the feasibility of combined use of the Northern Sea Route and the Suez Canal Route considering ice parameters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 350-369.
    19. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Ahmad, Mahmood & Dai, Jiapeng & Mehmood, Usman & Abou Houran, Mohamad, 2023. "Renewable energy transition, resource richness, economic growth, and environmental quality: Assessing the role of financial globalization," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5591-:d:809619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.