IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53991-y.html
   My bibliography  Save this article

Tropical cyclone activity over western North Pacific favors Arctic sea ice increase

Author

Listed:
  • Liangying Zeng

    (National University of Defense Technology
    China Meteorological Administration)

  • Yao Ha

    (National University of Defense Technology
    China Meteorological Administration
    Nanjing University)

  • Chuanfeng Zhao

    (Peking University)

  • Haixia Dai

    (National University of Defense Technology
    China Meteorological Administration)

  • Yimin Zhu

    (National University of Defense Technology
    China Meteorological Administration
    Nanjing University)

  • Yijia Hu

    (National University of Defense Technology
    China Meteorological Administration)

  • Xiaoyu Zhu

    (National University of Defense Technology
    China Meteorological Administration)

  • Zhiyuan Ding

    (National University of Defense Technology
    China Meteorological Administration)

  • Yudi Liu

    (National University of Defense Technology
    China Meteorological Administration)

  • Zhong Zhong

    (National University of Defense Technology
    Nanjing University
    Nanjing Normal University)

Abstract

Teleconnections between the tropics and the Arctic have attracted a lot of scientific interest. However, the mechanisms by which tropical synoptic-scale systems influence the variability of Arctic sea ice remain unknown. In this study, we highlight the impacts of tropical cyclone (TC) activity over the western North Pacific (WNP) on Arctic Sea Ice Concentration (SIC) using observational evidence and climate model simulation experiments. Our findings demonstrate significant positive correlations between Accumulated Cyclone Energy (ACE) in the WNP and SIC in the Arctic-Pacific Sector (APS), particularly when considering a 30-day lag. The TC activity over the WNP induces Rossby wave train propagation towards the Arctic, leading to anomalous cyclonic circulation over the upper troposphere of the APS. The anomalous cyclone over the Arctic, on one hand, signifies the deepening of the Arctic polar vortex and diminishes adiabatic warming over the APS, subsequently inducing cooling and drying of the lower Arctic air. This process reduces downward longwave radiation, promoting an increase in September APS SIC. On the other hand, the anomalous cyclone over the Arctic hinders the export of sea ice and local melting processes throughout the Fram Strait. These findings contribute to a deeper comprehension of tropics-Arctic teleconnections.

Suggested Citation

  • Liangying Zeng & Yao Ha & Chuanfeng Zhao & Haixia Dai & Yimin Zhu & Yijia Hu & Xiaoyu Zhu & Zhiyuan Ding & Yudi Liu & Zhong Zhong, 2024. "Tropical cyclone activity over western North Pacific favors Arctic sea ice increase," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53991-y
    DOI: 10.1038/s41467-024-53991-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53991-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53991-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Reza Najafi & Francis W. Zwiers & Nathan P. Gillett, 2015. "Attribution of Arctic temperature change to greenhouse-gas and aerosol influences," Nature Climate Change, Nature, vol. 5(3), pages 246-249, March.
    2. James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
    3. Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Delphine Lannuzel & Letizia Tedesco & Maria Leeuwe & Karley Campbell & Hauke Flores & Bruno Delille & Lisa Miller & Jacqueline Stefels & Philipp Assmy & Jeff Bowman & Kristina Brown & Giulia Castellan, 2020. "The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems," Nature Climate Change, Nature, vol. 10(11), pages 983-992, November.
    5. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    6. Zhe Li & Qinghua Ding & Michael Steele & Axel Schweiger, 2022. "Recent upper Arctic Ocean warming expedited by summertime atmospheric processes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Chundi Hu & Song Yang & Qigang Wu & Zhenning Li & Junwen Chen & Kaiqiang Deng & Tuantuan Zhang & Chengyang Zhang, 2016. "Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    8. Qiuyun Wang & Jianping Li & Fei-Fei Jin & Johnny C. L. Chan & Chunzai Wang & Ruiqiang Ding & Cheng Sun & Fei Zheng & Juan Feng & Fei Xie & Yanjie Li & Fei Li & Yidan Xu, 2019. "Tropical cyclones act to intensify El Niño," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    9. Qinghua Ding & John M. Wallace & David S. Battisti & Eric J. Steig & Ailie J. E. Gallant & Hyung-Jin Kim & Lei Geng, 2014. "Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland," Nature, Nature, vol. 509(7499), pages 209-212, May.
    10. Shushi Peng & Shilong Piao & Philippe Ciais & Ranga B. Myneni & Anping Chen & Frédéric Chevallier & Albertus J. Dolman & Ivan A. Janssens & Josep Peñuelas & Gengxin Zhang & Sara Vicca & Shiqiang Wan &, 2013. "Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation," Nature, Nature, vol. 501(7465), pages 88-92, September.
    11. Zhongfang Liu & Camille Risi & Francis Codron & Xiaogang He & Christopher J. Poulsen & Zhongwang Wei & Dong Chen & Sha Li & Gabriel J. Bowen, 2021. "Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Dániel Topál & Qinghua Ding & Thomas J. Ballinger & Edward Hanna & Xavier Fettweis & Zhe Li & Ildikó Pieczka, 2022. "Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhibiao Wang & Qinghua Ding & Renguang Wu & Thomas J. Ballinger & Bin Guan & Deniz Bozkurt & Deanna Nash & Ian Baxter & Dániel Topál & Zhe Li & Gang Huang & Wen Chen & Shangfeng Chen & Xi Cao & Zhang , 2024. "Role of atmospheric rivers in shaping long term Arctic moisture variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Bucher, Axel & El Ghouch, Anouar & Van Keilegom, Ingrid, 2014. "Single-index quantile regression models for censored data," LIDAM Discussion Papers ISBA 2014001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    7. Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018. "Natural Disaster Risk and the Distributional Dynamics of Damages," LEM Papers Series 2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Mohan, Preeya, 2017. "The economic impact of hurricanes on bananas: A case study of Dominica using synthetic control methods," Food Policy, Elsevier, vol. 68(C), pages 21-30.
    9. Morven Muilwijk & Tore Hattermann & Torge Martin & Mats A. Granskog, 2024. "Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    11. A. Deo & D. Ganer & G. Nair, 2011. "Tropical cyclone activity in global warming scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 771-786, November.
    12. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters - A Survey," Working Papers 200919, University of Hawaii at Manoa, Department of Economics.
    13. Sven Kunze, 2021. "Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 545-569, April.
    14. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    15. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    16. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    17. Zhiyuan Song & Ziyi Gao & Xianming Yang & Yuejing Ge, 2022. "Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    18. Mohammad Reza Najafi & Francis W. Zwiers & Nathan P. Gillett, 2016. "Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence," Climatic Change, Springer, vol. 136(3), pages 571-586, June.
    19. Graciano Yumul & Nathaniel Servando & Leilanie Suerte & Mae Magarzo & Leo Juguan & Carla Dimalanta, 2012. "Tropical cyclone–southwest monsoon interaction and the 2008 floods and landslides in Panay island, central Philippines: meteorological and geological factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 827-840, July.
    20. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53991-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.