IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42840-z.html
   My bibliography  Save this article

Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality

Author

Listed:
  • Ji Hwan Kim

    (Gwangju Institute of Science and Technology (GIST))

  • Roman Halaksa

    (Queen Mary University of London)

  • Il-Young Jo

    (Gwangju Institute of Science and Technology (GIST))

  • Hyungju Ahn

    (Pohang Accelerator Laboratory)

  • Peter A. Gilhooly-Finn

    (Queen Mary University of London)

  • Inho Lee

    (Ajou University)

  • Sungjun Park

    (Ajou University
    Ajou University)

  • Christian B. Nielsen

    (Queen Mary University of London)

  • Myung-Han Yoon

    (Gwangju Institute of Science and Technology (GIST))

Abstract

Despite the growing interest in dynamic behaviors at the frequency domain, there exist very few studies on molecular orientation-dependent transient responses of organic mixed ionic–electronic conductors. In this research, we investigated the effect of ion injection directionality on transient electrochemical transistor behaviors by developing a model mixed conductor system. Two polymers with similar electrical, ionic, and electrochemical characteristics but distinct backbone planarities and molecular orientations were successfully synthesized by varying the co-monomer unit (2,2’-bithiophene or phenylene) in conjunction with a novel 1,4-dithienylphenylene-based monomer. The comprehensive electrochemical analysis suggests that the molecular orientation affects the length of the ion-drift pathway, which is directly correlated with ion mobility, resulting in peculiar OECT transient responses. These results provide the general insight into molecular orientation-dependent ion movement characteristics as well as high-performance device design principles with fine-tuned transient responses.

Suggested Citation

  • Ji Hwan Kim & Roman Halaksa & Il-Young Jo & Hyungju Ahn & Peter A. Gilhooly-Finn & Inho Lee & Sungjun Park & Christian B. Nielsen & Myung-Han Yoon, 2023. "Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42840-z
    DOI: 10.1038/s41467-023-42840-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42840-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42840-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Rivnay & Sahika Inal & Brian A. Collins & Michele Sessolo & Eleni Stavrinidou & Xenofon Strakosas & Christopher Tassone & Dean M. Delongchamp & George G. Malliaras, 2016. "Structural control of mixed ionic and electronic transport in conducting polymers," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    2. Xudong Ji & Bryan D. Paulsen & Gary K. K. Chik & Ruiheng Wu & Yuyang Yin & Paddy K. L. Chan & Jonathan Rivnay, 2021. "Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Seong-Min Kim & Chang-Hyun Kim & Youngseok Kim & Nara Kim & Won-June Lee & Eun-Hak Lee & Dokyun Kim & Sungjun Park & Kwanghee Lee & Jonathan Rivnay & Myung-Han Yoon, 2018. "Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Dion Khodagholy & Jonathan Rivnay & Michele Sessolo & Moshe Gurfinkel & Pierre Leleux & Leslie H. Jimison & Eleni Stavrinidou & Thierry Herve & Sébastien Sanaur & Róisín M. Owens & George G. Malliaras, 2013. "High transconductance organic electrochemical transistors," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoyi Yan & Lanyi Xiang & Yu Xiao & Xuefeng Zhang & Ziling Jiang & Boya Zhang & Chenyang Li & Siyu Di & Fengjiao Zhang, 2024. "Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas M. Bongartz & Richard Kantelberg & Tommy Meier & Raik Hoffmann & Christian Matthus & Anton Weissbach & Matteo Cucchi & Hans Kleemann & Karl Leo, 2024. "Bistable organic electrochemical transistors: enthalpy vs. entropy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Filippo Bonafè & Francesco Decataldo & Isabella Zironi & Daniel Remondini & Tobias Cramer & Beatrice Fraboni, 2022. "AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Bo Fang & Jianmin Yan & Dan Chang & Jinli Piao & Kit Ming Ma & Qiao Gu & Ping Gao & Yang Chai & Xiaoming Tao, 2022. "Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Kamila Janzakova & Ankush Kumar & Mahdi Ghazal & Anna Susloparova & Yannick Coffinier & Fabien Alibart & Sébastien Pecqueur, 2021. "Analog programing of conducting-polymer dendritic interconnections and control of their morphology," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Umut Aydemir & Abdelrazek H. Mousa & Cedric Dicko & Xenofon Strakosas & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Damien Hughes & Fredrik Ek & Magnus Berggren & Ander, 2024. "In situ assembly of an injectable cardiac stimulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Youngseok Kim & Joost Kimpel & Alexander Giovannitti & Christian Müller, 2024. "Small signal analysis for the characterization of organic electrochemical transistors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Peiyun Li & Junwei Shi & Yuqiu Lei & Zhen Huang & Ting Lei, 2022. "Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Chaoyi Yan & Lanyi Xiang & Yu Xiao & Xuefeng Zhang & Ziling Jiang & Boya Zhang & Chenyang Li & Siyu Di & Fengjiao Zhang, 2024. "Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Matteo Cucchi & Anton Weissbach & Lukas M. Bongartz & Richard Kantelberg & Hsin Tseng & Hans Kleemann & Karl Leo, 2022. "Thermodynamics of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Chengpeng Jiang & Jiaqi Liu & Yao Ni & Shangda Qu & Lu Liu & Yue Li & Lu Yang & Wentao Xu, 2023. "Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Zachary Laswick & Xihu Wu & Abhijith Surendran & Zhongliang Zhou & Xudong Ji & Giovanni Maria Matrone & Wei Lin Leong & Jonathan Rivnay, 2024. "Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Shuai Chen & Zhongliang Zhou & Kunqi Hou & Xihu Wu & Qiang He & Cindy G. Tang & Ting Li & Xiujuan Zhang & Jiansheng Jie & Zhiyi Gao & Nripan Mathews & Wei Lin Leong, 2024. "Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xudong Ji & Xuanyi Lin & Jonathan Rivnay, 2023. "Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42840-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.