IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47580-2.html
   My bibliography  Save this article

Reconfigurable optoelectronic transistors for multimodal recognition

Author

Listed:
  • Pengzhan Li

    (Chinese Academy of Sciences
    Capital Normal University)

  • Mingzhen Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Qingli Zhou

    (Capital Normal University)

  • Qinghua Zhang

    (Chinese Academy of Sciences
    Yangtze River Delta Physics Research Center Co. Ltd.)

  • Donggang Xie

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Ge Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Zhuohui Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zheng Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Erjia Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Meng He

    (Chinese Academy of Sciences)

  • Can Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Lin Gu

    (Tsinghua University)

  • Guozhen Yang

    (Chinese Academy of Sciences)

  • Kuijuan Jin

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Chen Ge

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

Abstract

Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device’s superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion.

Suggested Citation

  • Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47580-2
    DOI: 10.1038/s41467-024-47580-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47580-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47580-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Nianpeng Lu & Pengfei Zhang & Qinghua Zhang & Ruimin Qiao & Qing He & Hao-Bo Li & Yujia Wang & Jingwen Guo & Ding Zhang & Zheng Duan & Zhuolu Li & Meng Wang & Shuzhen Yang & Mingzhe Yan & Elke Arenhol, 2017. "Electric-field control of tri-state phase transformation with a selective dual-ion switch," Nature, Nature, vol. 546(7656), pages 124-128, June.
    5. Ge Li & Donggang Xie & Hai Zhong & Ziye Zhang & Xingke Fu & Qingli Zhou & Qiang Li & Hao Ni & Jiaou Wang & Er-jia Guo & Meng He & Can Wang & Guozhen Yang & Kuijuan Jin & Chen Ge, 2022. "Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Mengwei Liu & Yujia Zhang & Jiachuang Wang & Nan Qin & Heng Yang & Ke Sun & Jie Hao & Lin Shu & Jiarui Liu & Qiang Chen & Pingping Zhang & Tiger H. Tao, 2022. "A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Xudong Ji & Bryan D. Paulsen & Gary K. K. Chik & Ruiheng Wu & Yuyang Yin & Paddy K. L. Chan & Jonathan Rivnay, 2021. "Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Chengpeng Jiang & Jiaqi Liu & Yao Ni & Shangda Qu & Lu Liu & Yue Li & Lu Yang & Wentao Xu, 2023. "Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. J. Feldmann & N. Youngblood & C. D. Wright & H. Bhaskaran & W. H. P. Pernice, 2019. "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Nature, vol. 569(7755), pages 208-214, May.
    12. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Xin Liu & Danhao Wang & Wei Chen & Yang Kang & Shi Fang & Yuanmin Luo & Dongyang Luo & Huabin Yu & Haochen Zhang & Kun Liang & Lan Fu & Boon S. Ooi & Sheng Liu & Haiding Sun, 2024. "Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jian Yao & Qinan Wang & Yong Zhang & Yu Teng & Jing Li & Pin Zhao & Chun Zhao & Ziyi Hu & Zongjie Shen & Liwei Liu & Dan Tian & Song Qiu & Zhongrui Wang & Lixing Kang & Qingwen Li, 2024. "Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Ali Momeni & Romain Fleury, 2022. "Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Fan Zhang & Yang Zhang & Linglong Li & Xing Mou & Huining Peng & Shengchun Shen & Meng Wang & Kunhong Xiao & Shuai-Hua Ji & Di Yi & Tianxiang Nan & Jianshi Tang & Pu Yu, 2023. "Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Jongmin Lee & Bum Ho Jeong & Eswaran Kamaraj & Dohyung Kim & Hakjun Kim & Sanghyuk Park & Hui Joon Park, 2023. "Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47580-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.