IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33094-2.html
   My bibliography  Save this article

AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors

Author

Listed:
  • Filippo Bonafè

    (University of Bologna)

  • Francesco Decataldo

    (University of Bologna)

  • Isabella Zironi

    (University of Bologna)

  • Daniel Remondini

    (University of Bologna)

  • Tobias Cramer

    (University of Bologna)

  • Beatrice Fraboni

    (University of Bologna)

Abstract

Research on electrolyte-gated and organic electrochemical transistor (OECT) architectures is motivated by the prospect of a highly biocompatible interface capable of amplifying bioelectronic signals at the site of detection. Despite many demonstrations in these directions, a quantitative model for OECTs as impedance biosensors is still lacking. We overcome this issue by introducing a model experiment where we simulate the detection of a single cell by the impedance sensing of a dielectric microparticle. The highly reproducible experiment allows us to study the impact of transistor geometry and operation conditions on device sensitivity. With the data we rationalize a mathematical model that provides clear guidelines for the optimization of OECTs as single cell sensors, and we verify the quantitative predictions in an in-vitro experiment. In the optimized geometry, the OECT-based impedance sensor allows to record single cell adhesion and detachment transients, showing a maximum gain of 20.2±0.9 dB with respect to a single electrode-based impedance sensor.

Suggested Citation

  • Filippo Bonafè & Francesco Decataldo & Isabella Zironi & Daniel Remondini & Tobias Cramer & Beatrice Fraboni, 2022. "AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33094-2
    DOI: 10.1038/s41467-022-33094-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33094-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33094-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dion Khodagholy & Thomas Doublet & Pascale Quilichini & Moshe Gurfinkel & Pierre Leleux & Antoine Ghestem & Esma Ismailova & Thierry Hervé & Sébastien Sanaur & Christophe Bernard & George G. Malliaras, 2013. "In vivo recordings of brain activity using organic transistors," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Dion Khodagholy & Jonathan Rivnay & Michele Sessolo & Moshe Gurfinkel & Pierre Leleux & Leslie H. Jimison & Eleni Stavrinidou & Thierry Herve & Sébastien Sanaur & Róisín M. Owens & George G. Malliaras, 2013. "High transconductance organic electrochemical transistors," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence Coles & Domenico Ventrella & Alejandro Carnicer-Lombarte & Alberto Elmi & Joe G. Troughton & Massimo Mariello & Salim El Hadwe & Ben J. Woodington & Maria L. Bacci & George G. Malliaras & Dam, 2024. "Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sophie Griggs & Adam Marks & Dilara Meli & Gonzague Rebetez & Olivier Bardagot & Bryan D. Paulsen & Hu Chen & Karrie Weaver & Mohamad I. Nugraha & Emily A. Schafer & Joshua Tropp & Catherine M. Aitchi, 2022. "The effect of residual palladium on the performance of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Umut Aydemir & Abdelrazek H. Mousa & Cedric Dicko & Xenofon Strakosas & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Damien Hughes & Fredrik Ek & Magnus Berggren & Ander, 2024. "In situ assembly of an injectable cardiac stimulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Eyal Stein & Oded Nahor & Mikhail Stolov & Viatcheslav Freger & Iuliana Maria Petruta & Iain McCulloch & Gitti L. Frey, 2022. "Ambipolar blend-based organic electrochemical transistors and inverters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Matteo Cucchi & Anton Weissbach & Lukas M. Bongartz & Richard Kantelberg & Hsin Tseng & Hans Kleemann & Karl Leo, 2022. "Thermodynamics of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Ji Hwan Kim & Roman Halaksa & Il-Young Jo & Hyungju Ahn & Peter A. Gilhooly-Finn & Inho Lee & Sungjun Park & Christian B. Nielsen & Myung-Han Yoon, 2023. "Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Xudong Ji & Xuanyi Lin & Jonathan Rivnay, 2023. "Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33094-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.