IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29773-9.html
   My bibliography  Save this article

Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors

Author

Listed:
  • Bo Fang

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

  • Jianmin Yan

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

  • Dan Chang

    (Zhejiang University)

  • Jinli Piao

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

  • Kit Ming Ma

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

  • Qiao Gu

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology (Guangzhou))

  • Ping Gao

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology (Guangzhou))

  • Yang Chai

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

  • Xiaoming Tao

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

Abstract

The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.

Suggested Citation

  • Bo Fang & Jianmin Yan & Dan Chang & Jinli Piao & Kit Ming Ma & Qiao Gu & Ping Gao & Yang Chai & Xiaoming Tao, 2022. "Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29773-9
    DOI: 10.1038/s41467-022-29773-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29773-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29773-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Kou & Tieqi Huang & Bingna Zheng & Yi Han & Xiaoli Zhao & Karthikeyan Gopalsamy & Haiyan Sun & Chao Gao, 2014. "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    2. Jonathan Rivnay & Sahika Inal & Brian A. Collins & Michele Sessolo & Eleni Stavrinidou & Xenofon Strakosas & Christopher Tassone & Dean M. Delongchamp & George G. Malliaras, 2016. "Structural control of mixed ionic and electronic transport in conducting polymers," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Yuki Koizumi & Naoki Shida & Masato Ohira & Hiroki Nishiyama & Ikuyoshi Tomita & Shinsuke Inagi, 2016. "Electropolymerization on wireless electrodes towards conducting polymer microfibre networks," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    4. Sahika Inal & George G. Malliaras & Jonathan Rivnay, 2017. "Benchmarking organic mixed conductors for transistors," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamila Janzakova & Ankush Kumar & Mahdi Ghazal & Anna Susloparova & Yannick Coffinier & Fabien Alibart & Sébastien Pecqueur, 2021. "Analog programing of conducting-polymer dendritic interconnections and control of their morphology," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Sophie Griggs & Adam Marks & Dilara Meli & Gonzague Rebetez & Olivier Bardagot & Bryan D. Paulsen & Hu Chen & Karrie Weaver & Mohamad I. Nugraha & Emily A. Schafer & Joshua Tropp & Catherine M. Aitchi, 2022. "The effect of residual palladium on the performance of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Matteo Cucchi & Anton Weissbach & Lukas M. Bongartz & Richard Kantelberg & Hsin Tseng & Hans Kleemann & Karl Leo, 2022. "Thermodynamics of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Ji Hwan Kim & Roman Halaksa & Il-Young Jo & Hyungju Ahn & Peter A. Gilhooly-Finn & Inho Lee & Sungjun Park & Christian B. Nielsen & Myung-Han Yoon, 2023. "Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kamila Janzakova & Ismael Balafrej & Ankush Kumar & Nikhil Garg & Corentin Scholaert & Jean Rouat & Dominique Drouin & Yannick Coffinier & Sébastien Pecqueur & Fabien Alibart, 2023. "Structural plasticity for neuromorphic networks with electropolymerized dendritic PEDOT connections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29773-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.