Author
Listed:
- Tian Li
(National University of Singapore)
- Haobo Qi
(National University of Singapore)
- Cancan Zhao
(Shanghai Research Institute of Stomatology)
- Zhenming Li
(Shanghai Research Institute of Stomatology)
- Wei Zhou
(National University of Singapore)
- Guanjin Li
(National University of Singapore)
- Hao Zhuo
(National University of Singapore)
- Wei Zhai
(National University of Singapore)
Abstract
Soft conductive gels are essential for epidermal electronics but often face challenges when interfacing with uneven surfaces or areas with extensive hair, especially under mechanical stress. In this study, we employed the concept of liquid-to-solid transformation to enhance integration at biointerfaces and designed an in-situ biogel capable of rapidly transitioning between liquid and solid states within 3 min via a temperature switch. The biogel features a semi-interpenetrating polymer network design and dual conduction pathways, resulting in high tensile strength (~1–3 MPa), a skin-compatible modulus (~0.3–1.1 MPa), strong skin adhesive strength (~1 MPa), and superior signal-to-noise ratio (SNR, ~30–40 dB). The biogel demonstrates significant performance in mechanically demanding environments, showing potential for accurately capturing outdoor exercise data, monitoring muscle recovery from sports-induced fatigue, and in vivo monitoring of cardiac physiological signals. The liquid-to-solid transformation concept, coupled with the design strategy for highly integrated and stable soft conductive materials, provides a basis for advancing conductive interface designs for high-fidelity signal acquisition.
Suggested Citation
Tian Li & Haobo Qi & Cancan Zhao & Zhenming Li & Wei Zhou & Guanjin Li & Hao Zhuo & Wei Zhai, 2025.
"Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55417-1
DOI: 10.1038/s41467-024-55417-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55417-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.