IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11287.html
   My bibliography  Save this article

Structural control of mixed ionic and electronic transport in conducting polymers

Author

Listed:
  • Jonathan Rivnay

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC
    Present address: PARC, a Xerox Company, 3333 Coyote Hill Road, Palo Alto, California 94304, USA.)

  • Sahika Inal

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Brian A. Collins

    (National Institute of Standards and Technology (NIST)
    Washington State University)

  • Michele Sessolo

    (Instituto de Ciencia Molecular, Universidad de Valencia)

  • Eleni Stavrinidou

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Xenofon Strakosas

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Christopher Tassone

    (Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory)

  • Dean M. Delongchamp

    (National Institute of Standards and Technology (NIST))

  • George G. Malliaras

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

Abstract

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.

Suggested Citation

  • Jonathan Rivnay & Sahika Inal & Brian A. Collins & Michele Sessolo & Eleni Stavrinidou & Xenofon Strakosas & Christopher Tassone & Dean M. Delongchamp & George G. Malliaras, 2016. "Structural control of mixed ionic and electronic transport in conducting polymers," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11287
    DOI: 10.1038/ncomms11287
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11287
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas M. Bongartz & Richard Kantelberg & Tommy Meier & Raik Hoffmann & Christian Matthus & Anton Weissbach & Matteo Cucchi & Hans Kleemann & Karl Leo, 2024. "Bistable organic electrochemical transistors: enthalpy vs. entropy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Youngseok Kim & Joost Kimpel & Alexander Giovannitti & Christian Müller, 2024. "Small signal analysis for the characterization of organic electrochemical transistors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Bo Fang & Jianmin Yan & Dan Chang & Jinli Piao & Kit Ming Ma & Qiao Gu & Ping Gao & Yang Chai & Xiaoming Tao, 2022. "Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ji Hwan Kim & Roman Halaksa & Il-Young Jo & Hyungju Ahn & Peter A. Gilhooly-Finn & Inho Lee & Sungjun Park & Christian B. Nielsen & Myung-Han Yoon, 2023. "Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kamila Janzakova & Ankush Kumar & Mahdi Ghazal & Anna Susloparova & Yannick Coffinier & Fabien Alibart & Sébastien Pecqueur, 2021. "Analog programing of conducting-polymer dendritic interconnections and control of their morphology," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.