IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27311-7.html
   My bibliography  Save this article

Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes

Author

Listed:
  • Shuting Luo

    (Tsinghua University)

  • Zhenyu Wang

    (Guilin Electrical Equipment Scientific Research Institute Co. Ltd.)

  • Xuelei Li

    (Tianjin University of Technology)

  • Xinyu Liu

    (Guilin Electrical Equipment Scientific Research Institute Co. Ltd.)

  • Haidong Wang

    (Tsinghua University)

  • Weigang Ma

    (Tsinghua University)

  • Lianqi Zhang

    (Tianjin University of Technology)

  • Lingyun Zhu

    (Guilin Electrical Equipment Scientific Research Institute Co. Ltd.)

  • Xing Zhang

    (Tsinghua University)

Abstract

All-solid-state lithium-based batteries with inorganic solid electrolytes are considered a viable option for electrochemical energy storage applications. However, the application of lithium metal is hindered by issues associated with the growth of mossy and dendritic Li morphologies upon prolonged cell cycling and undesired reactions at the electrode/solid electrolyte interface. In this context, alloy materials such as lithium-indium (Li-In) alloys are widely used at the laboratory scale because of their (electro)chemical stability, although no in-depth investigations on their morphological stability have been reported yet. In this work, we report the growth of Li-In dendritic structures when the alloy material is used in combination with a Li6PS5Cl solid electrolyte and Li(Ni0.6Co0.2Mn0.2)O2 positive electrode active material and cycled at high currents (e.g., 3.8 mA cm−2) and high cathode loading (e.g., 4 mAh cm−2). Via ex situ measurements and simulations, we demonstrate that the irregular growth of Li-In dendrites leads to cell short circuits after room-temperature long-term cycling. Furthermore, the difference between Li and Li-In dendrites is investigated and discussed to demonstrate the distinct type of dendrite morphology.

Suggested Citation

  • Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27311-7
    DOI: 10.1038/s41467-021-27311-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27311-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27311-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhgene Liu & Congcheng Wang & Sun Geun Yoon & Sang Yun Han & John A. Lewis & Dhruv Prakash & Emily J. Klein & Timothy Chen & Dae Hoon Kang & Diptarka Majumdar & Rajesh Gopalaswamy & Matthew T. McDowe, 2023. "Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. So-Yeon Ham & Elias Sebti & Ashley Cronk & Tyler Pennebaker & Grayson Deysher & Yu-Ting Chen & Jin An Sam Oh & Jeong Beom Lee & Min Sang Song & Phillip Ridley & Darren H. S. Tan & Raphaële J. Clément , 2024. "Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
    6. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Haowen Gao & Xin Ai & Hongchun Wang & Wangqin Li & Ping Wei & Yong Cheng & Siwei Gui & Hui Yang & Yong Yang & Ming-Sheng Wang, 2022. "Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Sunyoung Lee & Hayoung Park & Jae Young Kim & Jihoon Kim & Min-Ju Choi & Sangwook Han & Sewon Kim & Wonju Kim & Ho Won Jang & Jungwon Park & Kisuk Kang, 2024. "Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Ju-Sik Kim & Gabin Yoon & Sewon Kim & Shoichi Sugata & Nobuyoshi Yashiro & Shinya Suzuki & Myung-Jin Lee & Ryounghee Kim & Michael Badding & Zhen Song & JaeMyung Chang & Dongmin Im, 2023. "Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. So-Yeon Ham & Elias Sebti & Ashley Cronk & Tyler Pennebaker & Grayson Deysher & Yu-Ting Chen & Jin An Sam Oh & Jeong Beom Lee & Min Sang Song & Phillip Ridley & Darren H. S. Tan & Raphaële J. Clément , 2024. "Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Jing Li & Jizhen Qi & Feng Jin & Fengrui Zhang & Lei Zheng & Lingfei Tang & Rong Huang & Jingjing Xu & Hongwei Chen & Ming Liu & Yejun Qiu & Andrew I. Cooper & Yanbin Shen & Liwei Chen, 2022. "Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27311-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.