IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48585-7.html
   My bibliography  Save this article

A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries

Author

Listed:
  • Han Su

    (School of Materials Science and Engineering, Zhejiang University)

  • Jingru Li

    (School of Materials Science and Engineering, Zhejiang University)

  • Yu Zhong

    (School of Materials Science and Engineering, Zhejiang University)

  • Yu Liu

    (School of Materials Science and Engineering, Zhejiang University)

  • Xuhong Gao

    (School of Materials Science and Engineering, Zhejiang University)

  • Juner Kuang

    (School of Materials Science and Engineering, Zhejiang University)

  • Minkang Wang

    (School of Materials Science and Engineering, Zhejiang University)

  • Chunxi Lin

    (School of Materials Science and Engineering, Zhejiang University)

  • Xiuli Wang

    (School of Materials Science and Engineering, Zhejiang University)

  • Jiangping Tu

    (School of Materials Science and Engineering, Zhejiang University)

Abstract

Sulfides are promising electrolyte materials for all-solid-state Li metal batteries due to their high ionic conductivity and machinability. However, compatibility issues at the negative electrode/sulfide electrolyte interface hinder their practical implementation. Despite previous studies have proposed considerable strategies to improve the negative electrode/sulfide electrolyte interfacial stability, industrial-scale engineering solutions remain elusive. Here, we introduce a scalable Li-Al-Cl stratified structure, formed through the strain-activated separating behavior of thermodynamically unfavorable Li/Li9Al4 and Li/LiCl interfaces, to stabilize the negative electrode/sulfide electrolyte interface. In the Li-Al-Cl stratified structure, Li9Al4 and LiCl are enriched at the surface to serve as a robust solid electrolyte interphase and are diluted in bulk by Li metal to construct a skeleton. Enabled by its unique structural characteristic, the Li-Al-Cl stratified structure significantly enhances the stability of negative electrode/sulfide electrolyte interface. This work reports a strain-activated phase separation phenomenon and proposes a practical pathway for negative electrode/sulfide electrolyte interface engineering.

Suggested Citation

  • Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48585-7
    DOI: 10.1038/s41467-024-48585-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48585-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48585-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongli Wan & Zeyi Wang & Sufu Liu & Bao Zhang & Xinzi He & Weiran Zhang & Chunsheng Wang, 2023. "Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design," Nature Energy, Nature, vol. 8(5), pages 473-481, May.
    2. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    3. Junxian Hou & Languang Lu & Li Wang & Atsushi Ohma & Dongsheng Ren & Xuning Feng & Yan Li & Yalun Li & Issei Ootani & Xuebing Han & Weining Ren & Xiangming He & Yoshiaki Nitta & Minggao Ouyang, 2020. "Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Xiao Liang & Quan Pang & Ivan R. Kochetkov & Marina Safont Sempere & He Huang & Xiaoqi Sun & Linda F. Nazar, 2017. "A facile surface chemistry route to a stabilized lithium metal anode," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    5. Hongli Wan & Zeyi Wang & Weiran Zhang & Xinzi He & Chunsheng Wang, 2023. "Interface design for all-solid-state lithium batteries," Nature, Nature, vol. 623(7988), pages 739-744, November.
    6. Ziyang Ning & Guanchen Li & Dominic L. R. Melvin & Yang Chen & Junfu Bu & Dominic Spencer-Jolly & Junliang Liu & Bingkun Hu & Xiangwen Gao & Johann Perera & Chen Gong & Shengda D. Pu & Shengming Zhang, 2023. "Dendrite initiation and propagation in lithium metal solid-state batteries," Nature, Nature, vol. 618(7964), pages 287-293, June.
    7. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
    13. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Haowen Gao & Xin Ai & Hongchun Wang & Wangqin Li & Ping Wei & Yong Cheng & Siwei Gui & Hui Yang & Yong Yang & Ming-Sheng Wang, 2022. "Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48585-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.