IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55634-8.html
   My bibliography  Save this article

Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air

Author

Listed:
  • Mengchen Liu

    (University of California San Diego)

  • Jessica J. Hong

    (University of California San Diego)

  • Elias Sebti

    (University of California Santa Barbara
    University of California)

  • Ke Zhou

    (University of California San Diego)

  • Shen Wang

    (University of California San Diego)

  • Shijie Feng

    (University of California San Diego)

  • Tyler Pennebaker

    (University of California Santa Barbara
    University of California)

  • Zeyu Hui

    (University of California San Diego)

  • Qiushi Miao

    (University of California San Diego)

  • Ershuang Lu

    (San Diego)

  • Nimrod Harpak

    (University of California San Diego)

  • Sicen Yu

    (University of California San Diego)

  • Jianbin Zhou

    (University of California San Diego)

  • Jeong Woo Oh

    (Gangseo-gu)

  • Min-Sang Song

    (Gangseo-gu)

  • Jian Luo

    (University of California San Diego
    University of California San Diego)

  • Raphaële J. Clément

    (University of California Santa Barbara
    University of California)

  • Ping Liu

    (University of California San Diego
    University of California San Diego)

Abstract

Sulfide solid-state electrolytes (SSEs) are promising candidates to realize all solid-state batteries (ASSBs) due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not compatible with today’s lithium-ion battery manufacturing infrastructure. Herein, we present a reversible surface modification strategy that enables the processability of sulfide SSEs (e. g., Li6PS5Cl) under humid ambient air. We demonstrate that a long chain alkyl thiol, 1-undecanethiol, is chemically compatible with the electrolyte with negligible impact on its ion conductivity. Importantly, the thiol modification extends the amount of time that the sulfide SSE can be exposed to air with 33% relative humidity (33% RH) with limited degradation of its structure while retaining a conductivity of above 1 mS cm-1 for up to 2 days, a more than 100-fold improvement in protection time over competing approaches. Experimental and computational results reveal that the thiol group anchors to the SSE surface, while the hydrophobic hydrocarbon tail provides protection by repelling water. The modified Li6PS5Cl SSE maintains its function after exposure to ambient humidity when implemented in a Li0.5In | |LiNi0.8Co0.1Mn0.1O2 ASSB. The proposed protection strategy based on surface molecular interactions represents a major step forward towards cost-competitive and energy-efficient sulfide SSE manufacturing for ASSB applications.

Suggested Citation

  • Mengchen Liu & Jessica J. Hong & Elias Sebti & Ke Zhou & Shen Wang & Shijie Feng & Tyler Pennebaker & Zeyu Hui & Qiushi Miao & Ershuang Lu & Nimrod Harpak & Sicen Yu & Jianbin Zhou & Jeong Woo Oh & Mi, 2025. "Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55634-8
    DOI: 10.1038/s41467-024-55634-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55634-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55634-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ziyang Ning & Guanchen Li & Dominic L. R. Melvin & Yang Chen & Junfu Bu & Dominic Spencer-Jolly & Junliang Liu & Bingkun Hu & Xiangwen Gao & Johann Perera & Chen Gong & Shengda D. Pu & Shengming Zhang, 2023. "Dendrite initiation and propagation in lithium metal solid-state batteries," Nature, Nature, vol. 618(7964), pages 287-293, June.
    2. Hongli Wan & Zeyi Wang & Sufu Liu & Bao Zhang & Xinzi He & Weiran Zhang & Chunsheng Wang, 2023. "Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design," Nature Energy, Nature, vol. 8(5), pages 473-481, May.
    3. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    4. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    5. Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019. "High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes," Nature Energy, Nature, vol. 4(3), pages 187-196, March.
    6. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Manoj K. Jangid & Tae H. Cho & Tao Ma & Daniel W. Liao & Hwangsun Kim & Younggyu Kim & Miaofang Chi & Neil P. Dasgupta, 2024. "Eliminating chemo-mechanical degradation of lithium solid-state battery cathodes during >4.5 V cycling using amorphous Nb2O5 coatings," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yubin He & Chunyang Wang & Rui Zhang & Peichao Zou & Zhouyi Chen & Seong-Min Bak & Stephen E. Trask & Yonghua Du & Ruoqian Lin & Enyuan Hu & Huolin L. Xin, 2024. "A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Yuan, Yuxin & Yuan, Xiaodong, 2024. "The advances and opportunities of developing solid-state battery technology: Based on the patent Information Relation Matrix," Energy, Elsevier, vol. 296(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55634-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.