IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37404-0.html
   My bibliography  Save this article

Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution

Author

Listed:
  • Jiayi Chen

    (National University of Singapore)

  • Mohammed Aliasgar

    (National University of Singapore)

  • Fernando Buendia Zamudio

    (National University of Singapore)

  • Tianyu Zhang

    (National University of Singapore)

  • Yilin Zhao

    (National University of Singapore)

  • Xu Lian

    (National University of Singapore)

  • Lan Wen

    (National University of Singapore)

  • Haozhou Yang

    (National University of Singapore)

  • Wenping Sun

    (Zhejiang University)

  • Sergey M. Kozlov

    (National University of Singapore)

  • Wei Chen

    (National University of Singapore
    National University of Singapore
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
    National University of Singapore)

  • Lei Wang

    (National University of Singapore
    National University of Singapore)

Abstract

Membrane-based alkaline water electrolyser is promising for cost-effective green hydrogen production. One of its key technological obstacles is the development of active catalyst-materials for alkaline hydrogen-evolution-reaction (HER). Here, we show that the activity of platinum towards alkaline HER can be significantly enhanced by anchoring platinum-clusters onto two-dimensional fullerene nanosheets. The unusually large lattice distance (~0.8 nm) of the fullerene nanosheets and the ultra-small size of the platinum-clusters (~2 nm) leads to strong confinement of platinum clusters accompanied by pronounced charge redistributions at the intimate platinum/fullerene interface. As a result, the platinum-fullerene composite exhibits 12 times higher intrinsic activity for alkaline HER than the state-of-the-art platinum/carbon black catalyst. Detailed kinetic and computational investigations revealed the origin of the enhanced activity to be the diverse binding properties of the platinum-sites at the interface of platinum/fullerene, which generates highly active sites for all elementary steps in alkaline HER, particularly the sluggish Volmer step. Furthermore, encouraging energy efficiency of 74% and stability were achieved for alkaline water electrolyser assembled using platinum-fullerene composite under industrially relevant testing conditions.

Suggested Citation

  • Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37404-0
    DOI: 10.1038/s41467-023-37404-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37404-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37404-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junqing Yan & Lingqiao Kong & Yujin Ji & Jai White & Youyong Li & Jing Zhang & Pengfei An & Shengzhong Liu & Shuit-Tong Lee & Tianyi Ma, 2019. "Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    3. Zhenhua Zeng & Kee-Chul Chang & Joseph Kubal & Nenad M. Markovic & Jeffrey Greeley, 2017. "Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion," Nature Energy, Nature, vol. 2(6), pages 1-9, June.
    4. Fang Song & Xile Hu, 2014. "Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    5. Huajie Yin & Shenlong Zhao & Kun Zhao & Abdul Muqsit & Hongjie Tang & Lin Chang & Huijun Zhao & Yan Gao & Zhiyong Tang, 2015. "Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    6. Ian T. McCrum & Marc T. M. Koper, 2020. "The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum," Nature Energy, Nature, vol. 5(11), pages 891-899, November.
    7. Aaron Hodges & Anh Linh Hoang & George Tsekouras & Klaudia Wagner & Chong-Yong Lee & Gerhard F. Swiegers & Gordon G. Wallace, 2022. "A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    9. William E. Mustain & Paul A. Kohl, 2020. "Improving alkaline ionomers," Nature Energy, Nature, vol. 5(5), pages 359-360, May.
    10. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Wenchao Sheng & Zhongbin Zhuang & Minrui Gao & Jie Zheng & Jingguang G. Chen & Yushan Yan, 2015. "Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    12. Nam Khen Oh & Changmin Kim & Junghyun Lee & Ohhun Kwon & Yunseong Choi & Gwan Yeong Jung & Hyeong Yong Lim & Sang Kyu Kwak & Guntae Kim & Hyesung Park, 2019. "In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    13. Nam Khen Oh & Jihyung Seo & Sangjin Lee & Hyung-Jin Kim & Ungsoo Kim & Junghyun Lee & Young-Kyu Han & Hyesung Park, 2021. "Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Kimoon Lee & Sung Wng Kim & Yoshitake Toda & Satoru Matsuishi & Hideo Hosono, 2013. "Dicalcium nitride as a two-dimensional electride with an anionic electron layer," Nature, Nature, vol. 494(7437), pages 336-340, February.
    15. Fei-Yang Yu & Zhong-Ling Lang & Li-Ying Yin & Kun Feng & Yu-Jian Xia & Hua-Qiao Tan & Hao-Tian Zhu & Jun Zhong & Zhen-Hui Kang & Yang-Guang Li, 2020. "Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    16. Colleen Jackson & Graham T. Smith & David W. Inwood & Andrew S. Leach & Penny S. Whalley & Mauro Callisti & Tomas Polcar & Andrea E. Russell & Pieter Levecque & Denis Kramer, 2017. "Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Sheng Qian & Feng Xu & Yu Fan & Ningyan Cheng & Huaiguo Xue & Ye Yuan & Romain Gautier & Tengfei Jiang & Jingqi Tian, 2024. "Tailoring coordination environments of single-atom electrocatalysts for hydrogen evolution by topological heteroatom transfer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    5. Jon C. Wilson & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2023. "Insights into solvent and surface charge effects on Volmer step kinetics on Pt (111)," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Longsheng Cao & Fernando A. Soto & Dan Li & Tao Deng & Enyuan Hu & Xiner Lu & David A. Cullen & Nico Eidson & Xiao-Qing Yang & Kai He & Perla B. Balbuena & Chunsheng Wang, 2024. "Pd-Ru pair on Pt surface for promoting hydrogen oxidation and evolution in alkaline media," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. López-Fernández, E. & Gómez-Sacedón, C. & Gil-Rostra, J. & Espinós, J.P. & Brey, J. Javier & González-Elipe, A.R. & de Lucas-Consuegra, A. & Yubero, F., 2022. "Optimization of anion exchange membrane water electrolyzers using ionomer-free electrodes," Renewable Energy, Elsevier, vol. 197(C), pages 1183-1191.
    8. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Fengyi Shen & Zhihao Zhang & Zhe Wang & Hao Ren & Xinhu Liang & Zengjian Cai & Shitu Yang & Guodong Sun & Yanan Cao & Xiaoxin Yang & Mingzhen Hu & Zhengping Hao & Kebin Zhou, 2024. "Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    11. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    12. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    13. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    15. Yong-Qing Yan & Ya Chen & Zhao Wang & Li-Hua Chen & Hao-Lin Tang & Bao-Lian Su, 2023. "Electrochemistry-assisted selective butadiene hydrogenation with water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Zuraya Angeles-Olvera & Alfonso Crespo-Yapur & Oliver Rodríguez & Jorge L. Cholula-Díaz & Luz María Martínez & Marcelo Videa, 2022. "Nickel-Based Electrocatalysts for Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-35, February.
    19. Daniela S. Falcão, 2023. "Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives," Energies, MDPI, vol. 16(2), pages 1-8, January.
    20. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37404-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.