IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37708-1.html
   My bibliography  Save this article

Electrochemistry-assisted selective butadiene hydrogenation with water

Author

Listed:
  • Yong-Qing Yan

    (Wuhan University of Technology)

  • Ya Chen

    (Wuhan University of Technology)

  • Zhao Wang

    (Wuhan University of Technology
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley)

  • Li-Hua Chen

    (Wuhan University of Technology)

  • Hao-Lin Tang

    (Wuhan University of Technology
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley)

  • Bao-Lian Su

    (Wuhan University of Technology
    University of Namur)

Abstract

Alkene feedstocks are used to produce polymers with a market expected to reach 128.4 million metric tons by 2027. Butadiene is one of the impurities poisoning alkene polymerization catalysts and is usually removed by thermocatalytic selective hydrogenation. Excessive use of H2, poor alkene selectivity and high operating temperature (e.g. up to 350 °C) remain the most significant drawbacks of the thermocatalytic process, calling for innovative alternatives. Here we report a room-temperature (25~30 °C) electrochemistry-assisted selective hydrogenation process in a gas-fed fixed bed reactor, using water as the hydrogen source. Using a palladium membrane as the catalyst, this process offers a robust catalytic performance for selective butadiene hydrogenation, with alkene selectivity staying around 92% at a butadiene conversion above 97% for over 360 h of time on stream. The overall energy consumption of this process is 0.003 Wh/mLbutadiene, which is thousands of times lower than that of the thermocatalytic route. This study proposes an alternative electrochemical technology for industrial hydrogenation without the need for elevated temperature and hydrogen gas.

Suggested Citation

  • Yong-Qing Yan & Ya Chen & Zhao Wang & Li-Hua Chen & Hao-Lin Tang & Bao-Lian Su, 2023. "Electrochemistry-assisted selective butadiene hydrogenation with water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37708-1
    DOI: 10.1038/s41467-023-37708-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37708-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37708-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kailong Hu & Tatsuhiko Ohto & Yuki Nagata & Mitsuru Wakisaka & Yoshitaka Aoki & Jun-ichi Fujita & Yoshikazu Ito, 2021. "Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Felicia R. Lucci & Jilei Liu & Matthew D. Marcinkowski & Ming Yang & Lawrence F. Allard & Maria Flytzani-Stephanopoulos & E. Charles H. Sykes, 2015. "Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    3. Ian T. McCrum & Marc T. M. Koper, 2020. "The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum," Nature Energy, Nature, vol. 5(11), pages 891-899, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jon C. Wilson & Stavros Caratzoulas & Dionisios G. Vlachos & Yushan Yan, 2023. "Insights into solvent and surface charge effects on Volmer step kinetics on Pt (111)," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Quanguo Zhang & Youzhou Jiao & Chao He & Roger Ruan & Jianjun Hu & Jingzheng Ren & Sara Toniolo & Danping Jiang & Chaoyang Lu & Yameng Li & Yi Man & Huan Zhang & Zhiping Zhang & Chenxi Xia & Yi Wang &, 2024. "Biological fermentation pilot-scale systems and evaluation for commercial viability towards sustainable biohydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Rubén Rizo & Julia Fernández-Vidal & Laurence J. Hardwick & Gary A. Attard & Francisco J. Vidal-Iglesias & Victor Climent & Enrique Herrero & Juan M. Feliu, 2022. "Investigating the presence of adsorbed species on Pt steps at low potentials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Jinjie Fang & Haiyong Wang & Qian Dang & Hao Wang & Xingdong Wang & Jiajing Pei & Zhiyuan Xu & Chengjin Chen & Wei Zhu & Hui Li & Yushan Yan & Zhongbin Zhuang, 2024. "Atomically dispersed Iridium on Mo2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Manjeet Chhetri & Mingyu Wan & Zehua Jin & John Yeager & Case Sandor & Conner Rapp & Hui Wang & Sungsik Lee & Cameron J. Bodenschatz & Michael J. Zachman & Fanglin Che & Ming Yang, 2023. "Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zamljen, Aleksandra & Lavrič, Žan & Prašnikar, Anže & Teržan, Janvit & Grilc, Miha & Meden, Anton & Likozar, Blaž, 2024. "Understanding platinum-based H2 adsorption/ desorption kinetics during catalytic hydrogenation or hydrogen storage-related reactions," Renewable Energy, Elsevier, vol. 226(C).
    11. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Gaoxin Lin & Zhuang Zhang & Qiangjian Ju & Tong Wu & Carlo U. Segre & Wei Chen & Hongru Peng & Hui Zhang & Qiunan Liu & Zhi Liu & Yifan Zhang & Shuyi Kong & Yuanlv Mao & Wei Zhao & Kazu Suenaga & Fuqi, 2023. "Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. J. Cai & E. Griffin & V. H. Guarochico-Moreira & D. Barry & B. Xin & M. Yagmurcukardes & S. Zhang & A. K. Geim & F. M. Peeters & M. Lozada-Hidalgo, 2022. "Wien effect in interfacial water dissociation through proton-permeable graphene electrodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Pushkar G. Ghanekar & Siddharth Deshpande & Jeffrey Greeley, 2022. "Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37708-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.