IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7430.html
   My bibliography  Save this article

Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity

Author

Listed:
  • Huajie Yin

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology
    Tsinghua University)

  • Shenlong Zhao

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Kun Zhao

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Abdul Muqsit

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Hongjie Tang

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Lin Chang

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Huijun Zhao

    (Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University)

  • Yan Gao

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

  • Zhiyong Tang

    (Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology)

Abstract

Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.

Suggested Citation

  • Huajie Yin & Shenlong Zhao & Kun Zhao & Abdul Muqsit & Hongjie Tang & Lin Chang & Huijun Zhao & Yan Gao & Zhiyong Tang, 2015. "Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7430
    DOI: 10.1038/ncomms7430
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7430
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    2. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Cai, Weiwei & Liu, Wenzong & Sun, Haishu & Li, Jiaqi & Yang, Liming & Liu, Meijun & Zhao, Shenlong & Wang, Aijie, 2018. "Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells," Applied Energy, Elsevier, vol. 209(C), pages 56-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.