IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14274-z.html
   My bibliography  Save this article

Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction

Author

Listed:
  • Fei-Yang Yu

    (Northeast Normal University)

  • Zhong-Ling Lang

    (Northeast Normal University)

  • Li-Ying Yin

    (Northeast Normal University)

  • Kun Feng

    (Soochow University)

  • Yu-Jian Xia

    (Soochow University)

  • Hua-Qiao Tan

    (Northeast Normal University)

  • Hao-Tian Zhu

    (Northeast Normal University)

  • Jun Zhong

    (Soochow University)

  • Zhen-Hui Kang

    (Soochow University)

  • Yang-Guang Li

    (Northeast Normal University)

Abstract

The oxidized platinum (Pt) can exhibit better electrocatalytic activity than metallic Pt0 in the hydrogen evolution reaction (HER), which has aroused great interest in exploring the role of oxygen in Pt-based catalysts. Herein, we select two structurally well-defined polyoxometalates Na5[H3Pt(IV)W6O24] (PtW6O24) and Na3K5[Pt(II)2(W5O18)2] (Pt2(W5O18)2) as the platinum oxide model to investigate the HER performance. Electrocatalytic experiments show the mass activities of PtW6O24/C and Pt2(W5O18)2/C are 20.175 A mg−1 and 10.976 A mg−1 at 77 mV, respectively, which are better than that of commercial 20% Pt/C (0.398 A mg−1). The in situ synchrotron radiation experiments and DFT calculations suggest that the elongated Pt-O bond acts as the active site during the HER process, which can accelerate the coupling of proton and electron and the rapid release of H2. This work complements the knowledge boundary of Pt-based electrocatalytic HER, and suggests another way to update the state-of-the-art electrocatalyst.

Suggested Citation

  • Fei-Yang Yu & Zhong-Ling Lang & Li-Ying Yin & Kun Feng & Yu-Jian Xia & Hua-Qiao Tan & Hao-Tian Zhu & Jun Zhong & Zhen-Hui Kang & Yang-Guang Li, 2020. "Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14274-z
    DOI: 10.1038/s41467-019-14274-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14274-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14274-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14274-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.