IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34787-4.html
   My bibliography  Save this article

Model spread in tropical low cloud feedback tied to overturning circulation response to warming

Author

Listed:
  • Kathleen A. Schiro

    (University of Virginia)

  • Hui Su

    (University of California, Los Angeles
    University of California, Los Angeles
    The Hong Kong University of Science and Technology)

  • Fiaz Ahmed

    (University of California, Los Angeles
    University of California, Los Angeles)

  • Ni Dai

    (University of California, Los Angeles)

  • Clare E. Singer

    (California Institute of Technology)

  • Pierre Gentine

    (Columbia University)

  • Gregory S. Elsaesser

    (Columbia University
    NASA Goddard Institute for Space Studies)

  • Jonathan H. Jiang

    (California Institute of Technology)

  • Yong-Sang Choi

    (Ewha Womans University)

  • J. David Neelin

    (University of California, Los Angeles
    University of California, Los Angeles)

Abstract

Among models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6), here we show that the magnitude of the tropical low cloud feedback, which contributes considerably to uncertainty in estimates of climate sensitivity, is intimately linked to tropical deep convection and its effects on the tropical atmospheric overturning circulation. First, a reduction in tropical ascent area and an increased frequency of heavy precipitation result in high cloud reduction and upper-tropospheric drying, which increases longwave cooling and reduces subsidence weakening, favoring low cloud reduction (Radiation-Subsidence Pathway). Second, increased longwave cooling decreases tropospheric stability, which also reduces subsidence weakening and low cloudiness (Stability-Subsidence Pathway). In summary, greater high cloud reduction and upper-tropospheric drying (negative longwave feedback) lead to a more positive cloud feedback among CMIP6 models by contributing to a greater reduction in low cloudiness (positive shortwave feedback). Varying strengths of the two pathways contribute considerably to the intermodel spread in climate sensitivity.

Suggested Citation

  • Kathleen A. Schiro & Hui Su & Fiaz Ahmed & Ni Dai & Clare E. Singer & Pierre Gentine & Gregory S. Elsaesser & Jonathan H. Jiang & Yong-Sang Choi & J. David Neelin, 2022. "Model spread in tropical low cloud feedback tied to overturning circulation response to warming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34787-4
    DOI: 10.1038/s41467-022-34787-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34787-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34787-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven C. Sherwood & Sandrine Bony & Jean-Louis Dufresne, 2014. "Spread in model climate sensitivity traced to atmospheric convective mixing," Nature, Nature, vol. 505(7481), pages 37-42, January.
    2. Timothy A. Myers & Ryan C. Scott & Mark D. Zelinka & Stephen A. Klein & Joel R. Norris & Peter M. Caldwell, 2021. "Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity," Nature Climate Change, Nature, vol. 11(6), pages 501-507, June.
    3. Grégory V. Cesana & Anthony D. Del Genio, 2021. "Observational constraint on cloud feedbacks suggests moderate climate sensitivity," Nature Climate Change, Nature, vol. 11(3), pages 213-218, March.
    4. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    5. Hui Su & Jonathan H. Jiang & J. David Neelin & T. Janice Shen & Chengxing Zhai & Qing Yue & Zhien Wang & Lei Huang & Yong-Sang Choi & Graeme L. Stephens & Yuk L. Yung, 2017. "Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    6. Joel R. Norris & Robert J. Allen & Amato T. Evan & Mark D. Zelinka & Christopher W. O’Dell & Stephen A. Klein, 2016. "Evidence for climate change in the satellite cloud record," Nature, Nature, vol. 536(7614), pages 72-75, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xianan Jiang & Hui Su & Jonathan H. Jiang & J. David Neelin & Longtao Wu & Yoko Tsushima & Gregory Elsaesser, 2023. "Muted extratropical low cloud seasonal cycle is closely linked to underestimated climate sensitivity in models," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    4. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    5. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Giacomo Falchetta & Enrica De Cian & Filippo Pavanello & Ian Sue Wing, 2024. "Inequalities in global residential cooling energy use to 2050," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Gregory Duveiller & Federico Filipponi & Andrej Ceglar & Jędrzej Bojanowski & Ramdane Alkama & Alessandro Cescatti, 2021. "Revealing the widespread potential of forests to increase low level cloud cover," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    9. Young, Peter C., 2018. "Data-based mechanistic modelling and forecasting globally averaged surface temperature," International Journal of Forecasting, Elsevier, vol. 34(2), pages 314-335.
    10. Xu, Yue & Wang, Qingsong & Tian, Shu & Liu, Mengyue & Zhang, Yujie & Yuan, Xueliang & Ma, Qiao & Liu, Chengqing, 2024. "How to promote CO2 reduction in urban households from a micro perspective?," Energy, Elsevier, vol. 293(C).
    11. Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Randall Parkinson & Peter Harlem & John Meeder, 2015. "Managing the Anthropocene marine transgression to the year 2100 and beyond in the State of Florida U.S.A," Climatic Change, Springer, vol. 128(1), pages 85-98, January.
    13. Alexandra Jonko & Nathan M. Urban & Balu Nadiga, 2018. "Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data," Climatic Change, Springer, vol. 149(2), pages 247-260, July.
    14. Mehmet Balcilar & Zinnia Mukherjee & Rangan Gupta & Sonali Das, 2023. "Effect of Temperature on the Spread of Contagious Diseases: Evidence from over 2000 Years of Data," Working Papers 202322, University of Pretoria, Department of Economics.
    15. Enrico Biffis & Erik Chavez, 2017. "Satellite Data and Machine Learning for Weather Risk Management and Food Security," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1508-1521, August.
    16. Lucile Ricard & Fabrizio Falasca & Jakob Runge & Athanasios Nenes, 2024. "network-based constraint to evaluate climate sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Temesgen Alemayehu Abera & Janne Heiskanen & Eduardo Eiji Maeda & Mohammed Ahmed Muhammed & Netra Bhandari & Ville Vakkari & Binyam Tesfaw Hailu & Petri K. E. Pellikka & Andreas Hemp & Pieter G. Zyl &, 2024. "Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Ziqian Zhong & Bin He & Hans W. Chen & Deliang Chen & Tianjun Zhou & Wenjie Dong & Cunde Xiao & Shang-ping Xie & Xiangzhou Song & Lanlan Guo & Ruiqiang Ding & Lixia Zhang & Ling Huang & Wenping Yuan &, 2023. "Reversed asymmetric warming of sub-diurnal temperature over land during recent decades," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Menas C. Kafatos & Seung Hee Kim & Chul-Hee Lim & Jinwon Kim & Woo-Kyun Lee, 2017. "Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    20. Junichi Tsutsui, 2017. "Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models," Climatic Change, Springer, vol. 140(2), pages 287-305, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34787-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.