IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24551-5.html
   My bibliography  Save this article

Revealing the widespread potential of forests to increase low level cloud cover

Author

Listed:
  • Gregory Duveiller

    (European Commission Joint Research Centre
    Max Planck Institute for Biogeochemistry)

  • Federico Filipponi

    (European Commission Joint Research Centre
    Institute for Environmental Protection and Research (ISPRA))

  • Andrej Ceglar

    (European Commission Joint Research Centre)

  • Jędrzej Bojanowski

    (Institute of Geodesy and Cartography)

  • Ramdane Alkama

    (European Commission Joint Research Centre)

  • Alessandro Cescatti

    (European Commission Joint Research Centre)

Abstract

Forests play a key role in humanity’s current challenge to mitigate climate change thanks to their capacity to sequester carbon. Preserving and expanding forest cover is considered essential to enhance this carbon sink. However, changing the forest cover can further affect the climate system through biophysical effects. One such effect that is seldom studied is how afforestation can alter the cloud regime, which can potentially have repercussions on the hydrological cycle, the surface radiation budget and on planetary albedo itself. Here we provide a global scale assessment of this effect derived from satellite remote sensing observations. We show that for 67% of sampled areas across the world, afforestation would increase low level cloud cover, which should have a cooling effect on the planet. We further reveal a dependency of this effect on forest type, notably in Europe where needleleaf forests generate more clouds than broadleaf forests.

Suggested Citation

  • Gregory Duveiller & Federico Filipponi & Andrej Ceglar & Jędrzej Bojanowski & Ramdane Alkama & Alessandro Cescatti, 2021. "Revealing the widespread potential of forests to increase low level cloud cover," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24551-5
    DOI: 10.1038/s41467-021-24551-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24551-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24551-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    2. Quentin Lejeune & Edouard L. Davin & Lukas Gudmundsson & Johannes Winckler & Sonia I. Seneviratne, 2018. "Historical deforestation locally increased the intensity of hot days in northern mid-latitudes," Nature Climate Change, Nature, vol. 8(5), pages 386-390, May.
    3. Liang Chen & Paul A. Dirmeyer, 2020. "Reconciling the disagreement between observed and simulated temperature responses to deforestation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    5. Steven C. Sherwood & Sandrine Bony & Jean-Louis Dufresne, 2014. "Spread in model climate sensitivity traced to atmospheric convective mixing," Nature, Nature, vol. 505(7481), pages 37-42, January.
    6. Brody Sandel & Jens-Christian Svenning, 2013. "Human impacts drive a global topographic signature in tree cover," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    7. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro Sciusco & Jiquan Chen & Vincenzo Giannico & Michael Abraha & Cheyenne Lei & Gabriela Shirkey & Jing Yuan & G. Philip Robertson, 2022. "Albedo-Induced Global Warming Impact at Multiple Temporal Scales within an Upper Midwest USA Watershed," Land, MDPI, vol. 11(2), pages 1-19, February.
    2. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Debojyoti Chakraborty & Albert Ciceu & Dalibor Ballian & Marta Benito Garzón & Andreas Bolte & Gregor Bozic & Rafael Buchacher & Jaroslav Čepl & Eva Cremer & Alexis Ducousso & Julian Gaviria & Jan Pet, 2024. "Assisted tree migration can preserve the European forest carbon sink under climate change," Nature Climate Change, Nature, vol. 14(8), pages 845-852, August.
    4. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Raphael Portmann & Urs Beyerle & Edouard Davin & Erich M. Fischer & Steven Hertog & Sebastian Schemm, 2022. "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    6. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    7. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    8. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
    9. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    12. Anatoly Shvidenko & Mike Apps, 2006. "The International Boreal Forest Research Association: Understanding Boreal Forests and Forestry in a Changing World," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(1), pages 5-32, January.
    13. Robert Hamwey, 2007. "Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 419-439, May.
    14. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    15. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    16. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    17. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Jian Zhang & Xiaoqian Liu & Yao Qin & Yaoyuan Fan & Shuqian Cheng, 2024. "Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China," Land, MDPI, vol. 13(9), pages 1-25, September.
    19. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Juliana Freitas Santos & Udo Schickhoff & Shabeh ul Hasson & Jürgen Böhner, 2023. "Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models," Land, MDPI, vol. 12(4), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24551-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.