IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50813-z.html
   My bibliography  Save this article

network-based constraint to evaluate climate sensitivity

Author

Listed:
  • Lucile Ricard

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Fabrizio Falasca

    (New York University)

  • Jakob Runge

    (Institute of Data Science
    Technische Universität Berlin
    TU Dresden)

  • Athanasios Nenes

    (Ecole Polytechnique Fédérale de Lausanne (EPFL)
    Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH))

Abstract

The 2015 Paris agreement was established to limit Greenhouse gas (GHG) global warming below 1.5°C above preindustrial era values. Knowledge of climate sensitivity to GHG levels is central for formulating effective climate policies, yet its exact value is shroud in uncertainty. Climate sensitivity is quantitatively expressed in terms of Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR), estimating global temperature responses after an abrupt or transient doubling of CO2. Here, we represent the complex and highly-dimensional behavior of modelled climate via low-dimensional emergent networks to evaluate Climate Sensitivity (netCS), by first reconstructing meaningful components describing regional subprocesses, and secondly inferring the causal links between these to construct causal networks. We apply this methodology to Sea Surface Temperature (SST) simulations and investigate two different metrics in order to derive weighted estimates that yield likely ranges of ECS (2.35–4.81°C) and TCR (1.53-2.60°C). These ranges are narrower than the unconstrained distributions and consistent with the ranges of the IPCC AR6 estimates. More importantly, netCS demonstrates that SST patterns (at “fast” timescales) are linked to climate sensitivity; SST patterns over the historical period exclude median sensitivity but not low-sensitivity (ECS

Suggested Citation

  • Lucile Ricard & Fabrizio Falasca & Jakob Runge & Athanasios Nenes, 2024. "network-based constraint to evaluate climate sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50813-z
    DOI: 10.1038/s41467-024-50813-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50813-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50813-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven C. Sherwood & Sandrine Bony & Jean-Louis Dufresne, 2014. "Spread in model climate sensitivity traced to atmospheric convective mixing," Nature, Nature, vol. 505(7481), pages 37-42, January.
    2. Jakob Runge & Vladimir Petoukhov & Jonathan F. Donges & Jaroslav Hlinka & Nikola Jajcay & Martin Vejmelka & David Hartman & Norbert Marwan & Milan Paluš & Jürgen Kurths, 2015. "Identifying causal gateways and mediators in complex spatio-temporal systems," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Peter M. Cox & Chris Huntingford & Mark S. Williamson, 2018. "Emergent constraint on equilibrium climate sensitivity from global temperature variability," Nature, Nature, vol. 553(7688), pages 319-322, January.
    4. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Peer Nowack & Jakob Runge & Veronika Eyring & Joanna D. Haigh, 2020. "Causal networks for climate model evaluation and constrained projections," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunxiaojia Yuan & Fa Li & Gavin McNicol & Min Chen & Alison Hoyt & Sara Knox & William J. Riley & Robert Jackson & Qing Zhu, 2024. "Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity," Nature Climate Change, Nature, vol. 14(3), pages 282-288, March.
    2. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    4. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    5. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    6. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Bingbo Gao & Jianyu Yang & Ziyue Chen & George Sugihara & Manchun Li & Alfred Stein & Mei-Po Kwan & Jinfeng Wang, 2023. "Causal inference from cross-sectional earth system data with geographical convergent cross mapping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Dilger, Alexander, 2020. "Wirtschaftsethische Überlegungen zum Klimawandel," Discussion Papers of the Institute for Organisational Economics 5/2020, University of Münster, Institute for Organisational Economics.
    10. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Michel Damian & Luigi de Paoli, 2018. "Climate change: Back to development," Post-Print hal-01870974, HAL.
    12. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dipu, Sudhakar & Quaas, Johannes & Quaas, Martin & Rickels, Wilfried & Mülmenstädt, Johannes & Boucher, Olivier, 2021. "Substantial Climate Response outside the Target Area in an Idealized Experiment of Regional Radiation Management," Open Access Publications from Kiel Institute for the World Economy 240193, Kiel Institute for the World Economy (IfW Kiel).
    14. Gregory Duveiller & Federico Filipponi & Andrej Ceglar & Jędrzej Bojanowski & Ramdane Alkama & Alessandro Cescatti, 2021. "Revealing the widespread potential of forests to increase low level cloud cover," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Francisco Estrada & Oscar Calder'on-Bustamante & Wouter Botzen & Juli'an A. Velasco & Richard S. J. Tol, 2021. "AIRCC-Clim: a user-friendly tool for generating regional probabilistic climate change scenarios and risk measures," Papers 2111.01762, arXiv.org.
    16. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    17. Jakob Runge, 2023. "Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    18. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Young, Peter C., 2018. "Data-based mechanistic modelling and forecasting globally averaged surface temperature," International Journal of Forecasting, Elsevier, vol. 34(2), pages 314-335.
    20. Michel Damian & Luigi De Paoli, 2017. "Climate change: Back to development," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(3), pages 5-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50813-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.