IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50813-z.html
   My bibliography  Save this article

network-based constraint to evaluate climate sensitivity

Author

Listed:
  • Lucile Ricard

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Fabrizio Falasca

    (New York University)

  • Jakob Runge

    (Institute of Data Science
    Technische Universität Berlin
    TU Dresden)

  • Athanasios Nenes

    (Ecole Polytechnique Fédérale de Lausanne (EPFL)
    Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH))

Abstract

The 2015 Paris agreement was established to limit Greenhouse gas (GHG) global warming below 1.5°C above preindustrial era values. Knowledge of climate sensitivity to GHG levels is central for formulating effective climate policies, yet its exact value is shroud in uncertainty. Climate sensitivity is quantitatively expressed in terms of Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR), estimating global temperature responses after an abrupt or transient doubling of CO2. Here, we represent the complex and highly-dimensional behavior of modelled climate via low-dimensional emergent networks to evaluate Climate Sensitivity (netCS), by first reconstructing meaningful components describing regional subprocesses, and secondly inferring the causal links between these to construct causal networks. We apply this methodology to Sea Surface Temperature (SST) simulations and investigate two different metrics in order to derive weighted estimates that yield likely ranges of ECS (2.35–4.81°C) and TCR (1.53-2.60°C). These ranges are narrower than the unconstrained distributions and consistent with the ranges of the IPCC AR6 estimates. More importantly, netCS demonstrates that SST patterns (at “fast” timescales) are linked to climate sensitivity; SST patterns over the historical period exclude median sensitivity but not low-sensitivity (ECS

Suggested Citation

  • Lucile Ricard & Fabrizio Falasca & Jakob Runge & Athanasios Nenes, 2024. "network-based constraint to evaluate climate sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50813-z
    DOI: 10.1038/s41467-024-50813-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50813-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50813-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven C. Sherwood & Sandrine Bony & Jean-Louis Dufresne, 2014. "Spread in model climate sensitivity traced to atmospheric convective mixing," Nature, Nature, vol. 505(7481), pages 37-42, January.
    2. Peer Nowack & Jakob Runge & Veronika Eyring & Joanna D. Haigh, 2020. "Causal networks for climate model evaluation and constrained projections," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Jakob Runge & Vladimir Petoukhov & Jonathan F. Donges & Jaroslav Hlinka & Nikola Jajcay & Martin Vejmelka & David Hartman & Norbert Marwan & Milan Paluš & Jürgen Kurths, 2015. "Identifying causal gateways and mediators in complex spatio-temporal systems," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    4. Peter M. Cox & Chris Huntingford & Mark S. Williamson, 2018. "Emergent constraint on equilibrium climate sensitivity from global temperature variability," Nature, Nature, vol. 553(7688), pages 319-322, January.
    5. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunxiaojia Yuan & Fa Li & Gavin McNicol & Min Chen & Alison Hoyt & Sara Knox & William J. Riley & Robert Jackson & Qing Zhu, 2024. "Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity," Nature Climate Change, Nature, vol. 14(3), pages 282-288, March.
    2. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    4. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Dilger, Alexander, 2020. "Wirtschaftsethische Überlegungen zum Klimawandel," Discussion Papers of the Institute for Organisational Economics 5/2020, University of Münster, Institute for Organisational Economics.
    7. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Michel Damian & Luigi de Paoli, 2018. "Climate change: Back to development," Post-Print hal-01870974, HAL.
    9. Jakob Runge, 2023. "Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    10. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    12. Jajcay, Nikola, 2018. "Spatial and temporal scales of atmospheric dynamics," Thesis Commons ar8ks, Center for Open Science.
    13. Kathleen A. Schiro & Hui Su & Fiaz Ahmed & Ni Dai & Clare E. Singer & Pierre Gentine & Gregory S. Elsaesser & Jonathan H. Jiang & Yong-Sang Choi & J. David Neelin, 2022. "Model spread in tropical low cloud feedback tied to overturning circulation response to warming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Cai, Yunhao & Jing, Peng & Wang, Baihui & Jiang, Chengxi & Wang, Yuan, 2023. "How does “over-hype” lead to public misconceptions about autonomous vehicles? A new insight applying causal inference," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    15. Alexandra Jonko & Nathan M. Urban & Balu Nadiga, 2018. "Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data," Climatic Change, Springer, vol. 149(2), pages 247-260, July.
    16. Albert C. Yang & Chung-Kang Peng & Norden E. Huang, 2022. "Reply To: Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    17. Chris Huntingford & Mark S. Williamson & Femke J. M. M. Nijsse, 2020. "CMIP6 climate models imply high committed warming," Climatic Change, Springer, vol. 162(3), pages 1515-1520, October.
    18. Somnath Mondal & Ashok K. Mishra & Ruby Leung & Benjamin Cook, 2023. "Global droughts connected by linkages between drought hubs," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Roman Olson & Soon-Il An & Yanan Fan & Jason P Evans, 2019. "Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-24, April.
    20. David B. Stephenson & Alemtsehai A. Turasie & Donald P. Cummins, 2023. "More Accurate Climate Trend Attribution by Using Cointegrating Vector Time Series Models," Sustainability, MDPI, vol. 15(16), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50813-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.