IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v149y2018i2d10.1007_s10584-018-2232-0.html
   My bibliography  Save this article

Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data

Author

Listed:
  • Alexandra Jonko

    (Los Alamos National Laboratory)

  • Nathan M. Urban

    (Los Alamos National Laboratory)

  • Balu Nadiga

    (Los Alamos National Laboratory)

Abstract

Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.

Suggested Citation

  • Alexandra Jonko & Nathan M. Urban & Balu Nadiga, 2018. "Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data," Climatic Change, Springer, vol. 149(2), pages 247-260, July.
  • Handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2232-0
    DOI: 10.1007/s10584-018-2232-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2232-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2232-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Richardson & Kevin Cowtan & Ed Hawkins & Martin B. Stolpe, 2016. "Reconciled climate response estimates from climate models and the energy budget of Earth," Nature Climate Change, Nature, vol. 6(10), pages 931-935, October.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Steven C. Sherwood & Sandrine Bony & Jean-Louis Dufresne, 2014. "Spread in model climate sensitivity traced to atmospheric convective mixing," Nature, Nature, vol. 505(7481), pages 37-42, January.
    4. Gabriele C. Hegerl & Thomas J. Crowley & William T. Hyde & David J. Frame, 2006. "Climate sensitivity constrained by temperature reconstructions over the past seven centuries," Nature, Nature, vol. 440(7087), pages 1029-1032, April.
    5. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    6. Jun, Mikyoung & Knutti, Reto & Nychka, Douglas W, 2008. "Spatial Analysis to Quantify Numerical Model Bias and Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 934-947.
    7. Magne Aldrin & Marit Holden & Peter Guttorp & Ragnhild Bieltvedt Skeie & Gunnar Myhre & Terje Koren Berntsen, 2012. "Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content," Environmetrics, John Wiley & Sons, Ltd., vol. 23(3), pages 253-271, May.
    8. Emily L. Kang & Noel Cressie & Stephan R. Sain, 2012. "Combining outputs from the North American Regional Climate Change Assessment Program by using a Bayesian hierarchical model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 291-313, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Estrada & Oscar Calder'on-Bustamante & Wouter Botzen & Juli'an A. Velasco & Richard S. J. Tol, 2021. "AIRCC-Clim: a user-friendly tool for generating regional probabilistic climate change scenarios and risk measures," Papers 2111.01762, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junichi Tsutsui, 2017. "Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models," Climatic Change, Springer, vol. 140(2), pages 287-305, January.
    2. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    3. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    6. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    7. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    8. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    9. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    10. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    11. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    12. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    13. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    14. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    15. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    16. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    17. Robert Kubinec & Haillie Na‐Kyung Lee & Andrey Tomashevskiy, 2021. "Politically connected companies are less likely to shutdown due to COVID‐19 restrictions," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2155-2169, September.
    18. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    19. Salvatore Nunnari & Massimiliano Pozzi, 2022. "Meta-Analysis of Inequality Aversion Estimates," CESifo Working Paper Series 9851, CESifo.
    20. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2232-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.