IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56235-9.html
   My bibliography  Save this article

Increasing certainty in projected local extreme precipitation change

Author

Listed:
  • Chao Li

    (East China Normal University
    East China Normal University)

  • Jieyu Liu

    (Lanzhou University)

  • Fujun Du

    (East China Normal University
    East China Normal University)

  • Francis W. Zwiers

    (University of Victoria
    Nanjing University of Information Science and Technology)

  • Guolin Feng

    (Yangzhou University
    China Meteorological Administration)

Abstract

The latest climate models project widely varying magnitudes of future extreme precipitation changes, thus impeding effective adaptation planning. Many observational constraints have been proposed to reduce the uncertainty of these projections at global to sub-continental scales, but adaptation generally requires detailed, local scale information. Here, we present a temperature-based adaptative emergent constraint strategy combined with data aggregation that reduces the error variance of projected end-of-century changes in annual extremes of daily precipitation under a high emissions scenario by >20% across most areas of the world. These improved projections could benefit nearly 90% of the world’s population by permitting better impact assessment and adaptation planning at local levels. Our physically motivated strategy, which considers the thermodynamic and dynamic components of projected extreme precipitation change, exploits the link between global warming and the thermodynamic component of extreme precipitation. Rigorous cross-validation provides strong evidence of its reliability in constraining local extreme precipitation projections.

Suggested Citation

  • Chao Li & Jieyu Liu & Fujun Du & Francis W. Zwiers & Guolin Feng, 2025. "Increasing certainty in projected local extreme precipitation change," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56235-9
    DOI: 10.1038/s41467-025-56235-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56235-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56235-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongxiao Liang & Nathan P. Gillett & Adam H. Monahan, 2024. "Accounting for Pacific climate variability increases projected global warming," Nature Climate Change, Nature, vol. 14(6), pages 608-614, June.
    2. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
    3. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    4. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    6. Chad W. Thackeray & Alex Hall & Jesse Norris & Di Chen, 2022. "Constraining the increased frequency of global precipitation extremes under warming," Nature Climate Change, Nature, vol. 12(5), pages 441-448, May.
    7. Wenxia Zhang & Kalli Furtado & Tianjun Zhou & Peili Wu & Xiaolong Chen, 2022. "Constraining extreme precipitation projections using past precipitation variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Daokai Xue & Jian Lu & L. Ruby Leung & Haiyan Teng & Fengfei Song & Tianjun Zhou & Yaocun Zhang, 2023. "Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Daniel Mitchell & Rachel James & Piers M. Forster & Richard A. Betts & Hideo Shiogama & Myles Allen, 2016. "Realizing the impacts of a 1.5 °C warmer world," Nature Climate Change, Nature, vol. 6(8), pages 735-737, August.
    10. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    11. Mikhail V. Chester & B. Shane Underwood & Constantine Samaras, 2020. "Keeping infrastructure reliable under climate uncertainty," Nature Climate Change, Nature, vol. 10(6), pages 488-490, June.
    12. Alex Hall & Peter Cox & Chris Huntingford & Stephen Klein, 2019. "Progressing emergent constraints on future climate change," Nature Climate Change, Nature, vol. 9(4), pages 269-278, April.
    13. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(8), pages 791-791, August.
    14. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(4), pages 277-286, April.
    15. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Erratum: Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(12), pages 888-888, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Wenxia Zhang & Kalli Furtado & Tianjun Zhou & Peili Wu & Xiaolong Chen, 2022. "Constraining extreme precipitation projections using past precipitation variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    8. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Wenhao Dong & Yi Ming & Yi Deng & Zhaoyi Shen, 2024. "Recent wetting trend over Taklamakan and Gobi Desert dominated by internal variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Sarosh Alam Ghausi & Erwin Zehe & Subimal Ghosh & Yinglin Tian & Axel Kleidon, 2024. "Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Nico, Gianluigi & Azzarri, Carlo, 2022. "Weather variability and extreme shocks in Africa: Are female or male farmers more affected?," IFPRI discussion papers 2115, International Food Policy Research Institute (IFPRI).
    14. Dirk Olonscheck & Andrew P. Schurer & Lucie Lücke & Gabriele C. Hegerl, 2021. "Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Mohammad Fereshtehpour & Mohammad Reza Najafi & Jason A. Leach & Yuxuan Wang, 2025. "Quantifying the individual and combined influence of climate change, land cover transition, and internal climate variability on the hydrology of a snow-dominated forested watershed," Climatic Change, Springer, vol. 178(2), pages 1-32, February.
    16. Yiqun Tian & Shineng Hu & Clara Deser, 2023. "Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Chelsea L. Parker & Priscilla A. Mooney & Melinda A. Webster & Linette N. Boisvert, 2022. "The influence of recent and future climate change on spring Arctic cyclones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    20. Hojat Behrooz & Carlo Lipizzi & George Korfiatis & Mohammad Ilbeigi & Martin Powell & Mina Nouri, 2023. "Towards Automating the Identification of Sustainable Projects Seeking Financial Support: An AI-Powered Approach," Sustainability, MDPI, vol. 15(12), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56235-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.