IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31543-6.html
   My bibliography  Save this article

Massively targeted evaluation of therapeutic CRISPR off-targets in cells

Author

Listed:
  • Xiaoguang Pan

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Copenhagen University)

  • Kunli Qu

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Copenhagen University
    Aarhus University)

  • Hao Yuan

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    University of Chinese Academy of Sciences)

  • Xi Xiang

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Aarhus University)

  • Christian Anthon

    (University of Copenhagen)

  • Liubov Pashkova

    (University of Copenhagen)

  • Xue Liang

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Copenhagen University)

  • Peng Han

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Copenhagen University)

  • Giulia I. Corsi

    (University of Copenhagen)

  • Fengping Xu

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    University of Chinese Academy of Sciences
    BGI-Research, BGI-Shenzhen)

  • Ping Liu

    (BGI-Research, BGI-Shenzhen
    MGI, BGI-Shenzhen)

  • Jiayan Zhong

    (BGI-Research, BGI-Shenzhen
    MGI, BGI-Shenzhen)

  • Yan Zhou

    (Aarhus University)

  • Tao Ma

    (BGI-Research, BGI-Shenzhen
    MGI, BGI-Shenzhen)

  • Hui Jiang

    (BGI-Research, BGI-Shenzhen
    MGI, BGI-Shenzhen)

  • Junnian Liu

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen)

  • Jian Wang

    (BGI-Research, BGI-Shenzhen)

  • Niels Jessen

    (Aarhus University
    Aarhus University Hospital)

  • Lars Bolund

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Aarhus University)

  • Huanming Yang

    (BGI-Research, BGI-Shenzhen
    Chinese Academy of Sciences)

  • Xun Xu

    (BGI-Research, BGI-Shenzhen
    Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen)

  • George M. Church

    (Harvard Medical School)

  • Jan Gorodkin

    (University of Copenhagen)

  • Lin Lin

    (Aarhus University
    Aarhus University Hospital)

  • Yonglun Luo

    (Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen
    Aarhus University
    University of Chinese Academy of Sciences
    BGI-Research, BGI-Shenzhen)

Abstract

Methods for sensitive and high-throughput evaluation of CRISPR RNA-guided nucleases (RGNs) off-targets (OTs) are essential for advancing RGN-based gene therapies. Here we report SURRO-seq for simultaneously evaluating thousands of therapeutic RGN OTs in cells. SURRO-seq captures RGN-induced indels in cells by pooled lentiviral OTs libraries and deep sequencing, an approach comparable and complementary to OTs detection by T7 endonuclease 1, GUIDE-seq, and CIRCLE-seq. Application of SURRO-seq to 8150 OTs from 110 therapeutic RGNs identifies significantly detectable indels in 783 OTs, of which 37 OTs are found in cancer genes and 23 OTs are further validated in five human cell lines by targeted amplicon sequencing. Finally, SURRO-seq reveals that thermodynamically stable wobble base pair (rG•dT) and free binding energy strongly affect RGN specificity. Our study emphasizes the necessity of thoroughly evaluating therapeutic RGN OTs to minimize inevitable off-target effects.

Suggested Citation

  • Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31543-6
    DOI: 10.1038/s41467-022-31543-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31543-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31543-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Winston X. Yan & Reza Mirzazadeh & Silvano Garnerone & David Scott & Martin W. Schneider & Tomasz Kallas & Joaquin Custodio & Erik Wernersson & Yinqing Li & Linyi Gao & Yana Federova & Bernd Zetsche &, 2017. "BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Rongjie Fu & Wei He & Jinzhuang Dou & Oscar D. Villarreal & Ella Bedford & Helen Wang & Connie Hou & Liang Zhang & Yalong Wang & Dacheng Ma & Yiwen Chen & Xue Gao & Martin Depken & Han Xu, 2022. "Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Benjamin P. Kleinstiver & Vikram Pattanayak & Michelle S. Prew & Shengdar Q. Tsai & Nhu T. Nguyen & Zongli Zheng & J. Keith Joung, 2016. "High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects," Nature, Nature, vol. 529(7587), pages 490-495, January.
    5. David Burstein & Lucas B. Harrington & Steven C. Strutt & Alexander J. Probst & Karthik Anantharaman & Brian C. Thomas & Jennifer A. Doudna & Jillian F. Banfield, 2017. "New CRISPR–Cas systems from uncultivated microbes," Nature, Nature, vol. 542(7640), pages 237-241, February.
    6. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    7. Beverly Y. Mok & Marcos H. de Moraes & Jun Zeng & Dustin E. Bosch & Anna V. Kotrys & Aditya Raguram & FoSheng Hsu & Matthew C. Radey & S. Brook Peterson & Vamsi K. Mootha & Joseph D. Mougous & David R, 2020. "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing," Nature, Nature, vol. 583(7817), pages 631-637, July.
    8. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    9. Catherine S. Grasso & Yi-Mi Wu & Dan R. Robinson & Xuhong Cao & Saravana M. Dhanasekaran & Amjad P. Khan & Michael J. Quist & Xiaojun Jing & Robert J. Lonigro & J. Chad Brenner & Irfan A. Asangani & B, 2012. "The mutational landscape of lethal castration-resistant prostate cancer," Nature, Nature, vol. 487(7406), pages 239-243, July.
    10. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    11. Jennifer A. Doudna, 2020. "The promise and challenge of therapeutic genome editing," Nature, Nature, vol. 578(7794), pages 229-236, February.
    12. Max W. Shen & Mandana Arbab & Jonathan Y. Hsu & Daniel Worstell & Sannie J. Culbertson & Olga Krabbe & Christopher A. Cassa & David R. Liu & David K. Gifford & Richard I. Sherwood, 2018. "Predictable and precise template-free CRISPR editing of pathogenic variants," Nature, Nature, vol. 563(7733), pages 646-651, November.
    13. Shiran Abadi & Winston X Yan & David Amar & Itay Mayrose, 2017. "A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    14. F. Ann Ran & Le Cong & Winston X. Yan & David A. Scott & Jonathan S. Gootenberg & Andrea J. Kriz & Bernd Zetsche & Ophir Shalem & Xuebing Wu & Kira S. Makarova & Eugene V. Koonin & Phillip A. Sharp & , 2015. "In vivo genome editing using Staphylococcus aureus Cas9," Nature, Nature, vol. 520(7546), pages 186-191, April.
    15. Linyuan Ma & Jinxue Ruan & Jun Song & Luan Wen & Dongshan Yang & Jiangyang Zhao & Xiaofeng Xia & Y. Eugene Chen & Jifeng Zhang & Jie Xu, 2020. "MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Yuting Chen & Eriona Hysolli & Anlu Chen & Stephen Casper & Songlei Liu & Kevin Yang & Chenli Liu & George Church, 2022. "Multiplex base editing to convert TAG into TAA codons in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Zsolt Bodai & Alena L. Bishop & Valentino M. Gantz & Alexis C. Komor, 2022. "Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Minja Velimirovic & Larissa C. Zanetti & Max W. Shen & James D. Fife & Lin Lin & Minsun Cha & Ersin Akinci & Danielle Barnum & Tian Yu & Richard I. Sherwood, 2022. "Peptide fusion improves prime editing efficiency," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    19. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31543-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.