IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49343-5.html
   My bibliography  Save this article

Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase

Author

Listed:
  • Huawei Tong

    (Ltd.)

  • Haoqiang Wang

    (Ltd.)

  • Xuchen Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Nana Liu

    (Ltd.)

  • Guoling Li

    (Ltd.)

  • Danni Wu

    (Ltd.)

  • Yun Li

    (Ltd.)

  • Ming Jin

    (Fujian Medical University)

  • Hengbin Li

    (Ltd.)

  • Yinghui Wei

    (Northwest A&F University
    Northwest A&F University)

  • Tong Li

    (Ltd.)

  • Yuan Yuan

    (Ltd.)

  • Linyu Shi

    (Ltd.)

  • Xuan Yao

    (Ltd.)

  • Yingsi Zhou

    (Ltd.)

  • Hui Yang

    (Ltd.
    Chinese Academy of Sciences)

Abstract

DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.

Suggested Citation

  • Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49343-5
    DOI: 10.1038/s41467-024-49343-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49343-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49343-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhixin Lei & Haowei Meng & Lulu Liu & Huanan Zhao & Xichen Rao & Yongchang Yan & Hao Wu & Min Liu & Aibin He & Chengqi Yi, 2022. "Mitochondrial base editor induces substantial nuclear off-target mutations," Nature, Nature, vol. 606(7915), pages 804-811, June.
    3. Liwei Chen & Jung Eun Park & Peter Paa & Priscilla D. Rajakumar & Hong-Ting Prekop & Yi Ting Chew & Swathi N. Manivannan & Wei Leong Chew, 2021. "Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Yajing Liu & Changyang Zhou & Shisheng Huang & Lu Dang & Yu Wei & Jun He & Yingsi Zhou & Shaoshuai Mao & Wanyu Tao & Yu Zhang & Hui Yang & Xingxu Huang & Tian Chi, 2020. "A Cas-embedding strategy for minimizing off-target effects of DNA base editors," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Beverly Y. Mok & Marcos H. de Moraes & Jun Zeng & Dustin E. Bosch & Anna V. Kotrys & Aditya Raguram & FoSheng Hsu & Matthew C. Radey & S. Brook Peterson & Vamsi K. Mootha & Joseph D. Mougous & David R, 2020. "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing," Nature, Nature, vol. 583(7817), pages 631-637, July.
    6. Minh Thuan Nguyen Tran & Mohd Khairul Nizam Mohd Khalid & Qi Wang & Jacqueline K. R. Walker & Grace E. Lidgerwood & Kimberley L. Dilworth & Leszek Lisowski & Alice Pébay & Alex W. Hewitt, 2020. "Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Shuo Li & Bo Yuan & Jixin Cao & Jingqi Chen & Jinlong Chen & Jiayi Qiu & Xing-Ming Zhao & Xiaolin Wang & Zilong Qiu & Tian-Lin Cheng, 2020. "Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    9. Tanglong Yuan & Nana Yan & Tianyi Fei & Jitan Zheng & Juan Meng & Nana Li & Jing Liu & Haihang Zhang & Long Xie & Wenqin Ying & Di Li & Lei Shi & Yongsen Sun & Yongyao Li & Yixue Li & Yidi Sun & Erwei, 2021. "Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    11. Oecd, 2023. "Case Law," Nuclear Law Bulletin, OECD Publishing, vol. 2022(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shuqian Zhang & Bo Yuan & Jixin Cao & Liting Song & Jinlong Chen & Jiayi Qiu & Zilong Qiu & Xing-Ming Zhao & Jingqi Chen & Tian-Lin Cheng, 2023. "TadA orthologs enable both cytosine and adenine editing of base editors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yuting Chen & Eriona Hysolli & Anlu Chen & Stephen Casper & Songlei Liu & Kevin Yang & Chenli Liu & George Church, 2022. "Multiplex base editing to convert TAG into TAA codons in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Haifeng Sun & Zhaojun Wang & Limini Shen & Yeling Feng & Lu Han & Xuezhen Qian & Runde Meng & Kangming Ji & Dong Liang & Fei Zhou & Xin Lou & Jun Zhang & Bin Shen, 2023. "Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. You-Jeong Kim & Dayoung Yun & Jungjoon K. Lee & Cheulhee Jung & Aram J. Chung, 2024. "Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49343-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.