IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31496-w.html
   My bibliography  Save this article

Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests

Author

Listed:
  • Hongshuang Gu

    (Sichuan University)

  • Yuxin Qiao

    (Sichuan University)

  • Zhenxiang Xi

    (Sichuan University)

  • Sergio Rossi

    (Université du Québec à Chicoutimi)

  • Nicholas G. Smith

    (Texas Tech University)

  • Jianquan Liu

    (Sichuan University)

  • Lei Chen

    (Sichuan University
    Texas Tech University)

Abstract

Under global warming, advances in spring phenology due to rising temperatures have been widely reported. However, the physiological mechanisms underlying the advancement in spring phenology still remain poorly understood. Here, we investigated the effect of temperature during the previous growing season on spring phenology of current year based on the start of season extracted from multiple long-term and large-scale phenological datasets between 1951 and 2018. Our findings indicate that warmer temperatures during previous growing season are linked to earlier spring phenology of current year in temperate and boreal forests. Correspondingly, we observed an earlier spring phenology with the increase in photosynthesis of the previous growing season. These findings suggest that the observed warming-induced earlier spring phenology is driven by increased photosynthetic carbon assimilation in the previous growing season. Therefore, the vital role of warming-induced changes in carbon assimilation should be considered to accurately project spring phenology and carbon cycling in forest ecosystems under future climate warming.

Suggested Citation

  • Hongshuang Gu & Yuxin Qiao & Zhenxiang Xi & Sergio Rossi & Nicholas G. Smith & Jianquan Liu & Lei Chen, 2022. "Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31496-w
    DOI: 10.1038/s41467-022-31496-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31496-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31496-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xufeng Wang & Jingfeng Xiao & Xin Li & Guodong Cheng & Mingguo Ma & Gaofeng Zhu & M. Altaf Arain & T. Andrew Black & Rachhpal S. Jassal, 2019. "No trends in spring and autumn phenology during the global warming hiatus," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Yongshuo H. Fu & Hongfang Zhao & Shilong Piao & Marc Peaucelle & Shushi Peng & Guiyun Zhou & Philippe Ciais & Mengtian Huang & Annette Menzel & Josep Peñuelas & Yang Song & Yann Vitasse & Zhenzhong Ze, 2015. "Declining global warming effects on the phenology of spring leaf unfolding," Nature, Nature, vol. 526(7571), pages 104-107, October.
    3. Shilong Piao & Jianguang Tan & Anping Chen & Yongshuo H. Fu & Philippe Ciais & Qiang Liu & Ivan A. Janssens & Sara Vicca & Zhenzhong Zeng & Su-Jong Jeong & Yue Li & Ranga B. Myneni & Shushi Peng & Mia, 2015. "Leaf onset in the northern hemisphere triggered by daytime temperature," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    4. Jinghan Liang & Armando Marino & Yongjie Ji, 2024. "Spatial and Temporal Change Characteristics and Climatic Drivers of Vegetation Productivity and Greenness during the 2001–2020 Growing Seasons on the Qinghai–Tibet Plateau," Land, MDPI, vol. 13(8), pages 1-22, August.
    5. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    6. Jiaxin Jin & Ying Wang & Hong Jiang & Min Cheng, 2016. "Recent NDVI-Based Variation in Growth of Boreal Intact Forest Landscapes and Its Correlation with Climatic Variables," Sustainability, MDPI, vol. 8(4), pages 1-10, April.
    7. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Xiaoying Ouyang & Dongmei Chen & Shugui Zhou & Rui Zhang & Jinxin Yang & Guangcheng Hu & Youjun Dou & Qinhuo Liu, 2021. "A Slight Temperature Warming Trend Occurred over Lake Ontario from 2001 to 2018," Land, MDPI, vol. 10(12), pages 1-16, November.
    9. Jadwiga Nidzgorska-Lencewicz & Agnieszka Mąkosza & Czesław Koźmiński & Bożena Michalska, 2024. "Potential Risk of Frost in the Growing Season in Poland," Agriculture, MDPI, vol. 14(3), pages 1-19, March.
    10. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    11. Xin Yang & Yuanyuan Hao & Wenxia Cao & Xiaojun Yu & Limin Hua & Xin Liu & Tao Yu & Caijin Chen, 2021. "How Does Spring Phenology Respond to Climate Change in Ecologically Fragile Grassland? A Case Study from the Northeast Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    12. Shuying Han & Jiaqi Zhai & Mengyang Ma & Yong Zhao & Xing Li & Linghui Li & Haihong Li, 2024. "A Study on the Differences in Vegetation Phenological Characteristics and Their Effects on Water–Carbon Coupling in the Huang-Huai-Hai and Yangtze River Basins, China," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
    13. Zhaozhe Li & Ranghui Wang & Bo Liu & Zhonghua Qian & Yongping Wu & Cheng Li, 2022. "Responses of Vegetation Autumn Phenology to Climatic Factors in Northern China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    14. Gauzere, Julie & Lucas, Camille & Ronce, Ophélie & Davi, Hendrik & Chuine, Isabelle, 2019. "Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate," Ecological Modelling, Elsevier, vol. 411(C).
    15. Yann Vitasse & Martine Rebetez, 2018. "Unprecedented risk of spring frost damage in Switzerland and Germany in 2017," Climatic Change, Springer, vol. 149(2), pages 233-246, July.
    16. Shengbiao Wu & Bin Chen & Chris Webster & Bing Xu & Peng Gong, 2023. "Improved human greenspace exposure equality during 21st century urbanization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31496-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.