IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9931-d1520887.html
   My bibliography  Save this article

Spring Phenological Responses of Diverse Vegetation Types to Extreme Climatic Events in Mongolia

Author

Listed:
  • Qier Mu

    (Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
    Research Laboratory of Geo-Informatics (GEO-iLAB), Graduate School, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Sainbuyan Bayarsaikhan

    (Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
    Research Laboratory of Geo-Informatics (GEO-iLAB), Graduate School, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Gang Bao

    (Inner Mongolia Key Laboratory of Remote Sensing and Geography Information System, Hohhot 010022, China
    College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China)

  • Battsengel Vandansambuu

    (Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
    Research Laboratory of Geo-Informatics (GEO-iLAB), Graduate School, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Siqin Tong

    (Inner Mongolia Key Laboratory of Remote Sensing and Geography Information System, Hohhot 010022, China
    College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China)

  • Byambakhuu Gantumur

    (Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
    Research Laboratory of Geo-Informatics (GEO-iLAB), Graduate School, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Byambabayar Ganbold

    (Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
    Research Laboratory of Geo-Informatics (GEO-iLAB), Graduate School, National University of Mongolia, Ulaanbaatar 14200, Mongolia)

  • Yuhai Bao

    (Inner Mongolia Key Laboratory of Remote Sensing and Geography Information System, Hohhot 010022, China
    College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China)

Abstract

The increasing frequency of extreme climate events may significantly alter the species composition, structure, and functionality of ecosystems, thereby diminishing their stability and resilience. This study draws on temperature and precipitation data from 53 meteorological stations across Mongolia, covering the period from 1983 to 2016, along with MODIS normalized difference vegetation index (NDVI) data from 2001 to 2016. The climate anomaly method and the curvature method of cumulative NDVI logistic curves were employed to identify years of extreme climate events and to extract the start of the growing season (SOS) in Mongolia. Furthermore, the study assessed the impact of extreme climate events on the SOS across different vegetation types and evaluated the sensitivity of the SOS to extreme climate indices. The study results show that, compared to the multi-year average green-up period from 2001 to 2016, extreme climate events significantly impact the SOS. Extreme dryness advanced the SOS by 6.9 days, extreme wetness by 2.5 days, and extreme warmth by 13.2 days, while extreme cold delayed the SOS by 1.2 days. During extreme drought events, the sensitivity of SOS to TN90p (warm nights) was the highest; in extremely wet years, the sensitivity of SOS to TX10p (cool days) was the strongest; in extreme warm events, SOS was most sensitive to TX90p (warm days); and during extreme cold events, SOS was most sensitive to TNx (maximum night temperature). Overall, the SOS was most sensitive to extreme temperature indices during extreme climate events, with a predominantly negative sensitivity. The response and sensitivity of SOS to extreme climate events varied across different vegetation types. This is crucial for understanding the dynamic changes of ecosystems and assessing potential ecological risks.

Suggested Citation

  • Qier Mu & Sainbuyan Bayarsaikhan & Gang Bao & Battsengel Vandansambuu & Siqin Tong & Byambakhuu Gantumur & Byambabayar Ganbold & Yuhai Bao, 2024. "Spring Phenological Responses of Diverse Vegetation Types to Extreme Climatic Events in Mongolia," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9931-:d:1520887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    2. Yongshuo H. Fu & Hongfang Zhao & Shilong Piao & Marc Peaucelle & Shushi Peng & Guiyun Zhou & Philippe Ciais & Mengtian Huang & Annette Menzel & Josep Peñuelas & Yang Song & Yann Vitasse & Zhenzhong Ze, 2015. "Declining global warming effects on the phenology of spring leaf unfolding," Nature, Nature, vol. 526(7571), pages 104-107, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    3. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    4. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    5. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    7. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    8. Yang Yang & Tianxiang Yue, 2024. "Variations of Global Compound Temperature and Precipitation Events and Associated Population Exposure Projected by the CMIP6 Multi-Model Ensemble," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    9. Jinghan Liang & Armando Marino & Yongjie Ji, 2024. "Spatial and Temporal Change Characteristics and Climatic Drivers of Vegetation Productivity and Greenness during the 2001–2020 Growing Seasons on the Qinghai–Tibet Plateau," Land, MDPI, vol. 13(8), pages 1-22, August.
    10. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    11. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    12. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    13. Ioannis Roussis & Dimitrios Beslemes & Chariklia Kosma & Vassilios Triantafyllidis & Anastasios Zotos & Evangelia Tigka & Antonios Mavroeidis & Stella Karydogianni & Varvara Kouneli & Ilias Travlos & , 2022. "The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato ( Lycopersicon esculentum Mill.) Seedlings," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    14. Pengyuan Wang & Shaoqiang Wang & Bin Chen & Muhammad Amir & Lei Wang & Jinghua Chen & Li Ma & Xiaobo Wang & Yuanyuan Liu & Kai Zhu, 2022. "Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis," Sustainability, MDPI, vol. 14(5), pages 1-26, February.
    15. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    16. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Verbeeck, Hans & Samson, Roeland & Granier, André & Montpied, Pierre & Lemeur, Raoul, 2008. "Multi-year model analysis of GPP in a temperate beech forest in France," Ecological Modelling, Elsevier, vol. 210(1), pages 85-103.
    19. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    20. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9931-:d:1520887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.