IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1230-d1451898.html
   My bibliography  Save this article

Spatial and Temporal Change Characteristics and Climatic Drivers of Vegetation Productivity and Greenness during the 2001–2020 Growing Seasons on the Qinghai–Tibet Plateau

Author

Listed:
  • Jinghan Liang

    (College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China)

  • Armando Marino

    (Biological and Environmental Sciences, The University of Stirling, Stirling FK94LA, UK)

  • Yongjie Ji

    (College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China)

Abstract

Exploring NDVI variation and what drives it on the Qinghai–Tibet Plateau can strategically inform environmental protection efforts in light of global climate change. For this analysis, we obtained MODIS NDVI data collected during the vegetative growing season, vegetation types for the region, and meteorological data for the same period from 2001 to 2020. We performed Theil–Sen trend analysis, Mann–Kendall significance testing, spatial autocorrelation analysis, and Hurst index calculation to review the spatiotemporal changes in NDVI characteristics on the plateau for various vegetation types. We used the correlation coefficients from these analyses to investigate how the NDVI responds to temperature and precipitation. We found the following: (1) Overall, the Qinghai–Tibet Plateau NDVI increased throughout the multi-year growing season, with a much larger area of improvement (65.68%) than of degradation (8.83%). (2) The four main vegetation types were all characterized by improvement, with meadows (72.13%) comprising the largest portion of the improved area and shrubs (18.17%) comprising the largest portion of the degraded area. (3) The spatial distribution of the NDVI had a strong positive correlation and clustering effect and was stable overall. The local clustering patterns were primarily low–low and high–high clustering. (4) The Hurst index had an average value of 0.46, indicating that the sustainability of vegetation is poor; that is, the trend of vegetation change in the growing season in a large part of the Qinghai–Tibet Plateau in the future is opposite to that in the past. (5) The plateau NDVI correlated positively with air temperature and precipitation. However, the correlations varied geographically: air temperature had a wide influence, whereas precipitation mainly influenced meadows and grassland in the northern arid zone. The overall temperature-driven effect was stronger than that of precipitation. This finding is consistent with the current research conclusion that global warming and humidification promote vegetation growth in high-altitude areas and further emphasizes the uniqueness of the Qinghai–Tibet Plateau as a climate-change-sensitive area. This study also offers a technical foundation for understanding how climate change impacts high-altitude ecosystems, as well as for formulating ecological protection strategies for the plateau.

Suggested Citation

  • Jinghan Liang & Armando Marino & Yongjie Ji, 2024. "Spatial and Temporal Change Characteristics and Climatic Drivers of Vegetation Productivity and Greenness during the 2001–2020 Growing Seasons on the Qinghai–Tibet Plateau," Land, MDPI, vol. 13(8), pages 1-22, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1230-:d:1451898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongshuo H. Fu & Hongfang Zhao & Shilong Piao & Marc Peaucelle & Shushi Peng & Guiyun Zhou & Philippe Ciais & Mengtian Huang & Annette Menzel & Josep Peñuelas & Yang Song & Yann Vitasse & Zhenzhong Ze, 2015. "Declining global warming effects on the phenology of spring leaf unfolding," Nature, Nature, vol. 526(7571), pages 104-107, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    2. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jadwiga Nidzgorska-Lencewicz & Agnieszka Mąkosza & Czesław Koźmiński & Bożena Michalska, 2024. "Potential Risk of Frost in the Growing Season in Poland," Agriculture, MDPI, vol. 14(3), pages 1-19, March.
    4. Xin Yang & Yuanyuan Hao & Wenxia Cao & Xiaojun Yu & Limin Hua & Xin Liu & Tao Yu & Caijin Chen, 2021. "How Does Spring Phenology Respond to Climate Change in Ecologically Fragile Grassland? A Case Study from the Northeast Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    5. Shuying Han & Jiaqi Zhai & Mengyang Ma & Yong Zhao & Xing Li & Linghui Li & Haihong Li, 2024. "A Study on the Differences in Vegetation Phenological Characteristics and Their Effects on Water–Carbon Coupling in the Huang-Huai-Hai and Yangtze River Basins, China," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
    6. Gauzere, Julie & Lucas, Camille & Ronce, Ophélie & Davi, Hendrik & Chuine, Isabelle, 2019. "Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate," Ecological Modelling, Elsevier, vol. 411(C).
    7. Yann Vitasse & Martine Rebetez, 2018. "Unprecedented risk of spring frost damage in Switzerland and Germany in 2017," Climatic Change, Springer, vol. 149(2), pages 233-246, July.
    8. Hongshuang Gu & Yuxin Qiao & Zhenxiang Xi & Sergio Rossi & Nicholas G. Smith & Jianquan Liu & Lei Chen, 2022. "Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1230-:d:1451898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.