IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37938-3.html
   My bibliography  Save this article

Experimental warming causes mismatches in alpine plant-microbe-fauna phenology

Author

Listed:
  • Rui Yin

    (Peking University)

  • Wenkuan Qin

    (Peking University)

  • Xudong Wang

    (Peking University)

  • Dong Xie

    (Lanzhou University)

  • Hao Wang

    (Lanzhou University)

  • Hongyang Zhao

    (Peking University)

  • Zhenhua Zhang

    (Chinese Academy of Sciences)

  • Jin-Sheng He

    (Peking University
    Lanzhou University)

  • Martin Schädler

    (Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig)

  • Paul Kardol

    (Swedish University of Agricultural Sciences
    Swedish University of Agricultural Sciences)

  • Nico Eisenhauer

    (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
    Leipzig University)

  • Biao Zhu

    (Peking University)

Abstract

Long-term observations have shown that many plants and aboveground animals have changed their phenology patterns due to warmer temperatures over the past decades. However, empirical evidence for phenological shifts in alpine organisms, particularly belowground organisms, is scarce. Here, we investigate how the activities and phenology of plants, soil microbes, and soil fauna will respond to warming in an alpine meadow on the Tibetan Plateau, and whether their potential phenological changes will be synchronized. We experimentally simulate an increase in soil temperature by 2–4 °C according to future projections for this region. We find that warming promotes plant growth, soil microbial respiration, and soil fauna feeding by 8%, 57%, and 20%, respectively, but causes dissimilar changes in their phenology during the growing season. Specifically, warming advances soil faunal feeding activity in spring and delays it in autumn, while their peak activity does not change; whereas warming increases the peak activity of plant growth and soil microbial respiration but with only minor shifts in their phenology. Such phenological asynchrony in alpine organisms may alter ecosystem functioning and stability.

Suggested Citation

  • Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37938-3
    DOI: 10.1038/s41467-023-37938-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37938-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37938-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy M. Cohen & Marc J. Lajeunesse & Jason R. Rohr, 2018. "A global synthesis of animal phenological responses to climate change," Nature Climate Change, Nature, vol. 8(3), pages 224-228, March.
    2. Jeremy M. Cohen & Marc J. Lajeunesse & Jason R. Rohr, 2018. "Publisher Correction: A global synthesis of animal phenological responses to climate change," Nature Climate Change, Nature, vol. 8(3), pages 258-258, March.
    3. Adrian E. Raftery & Alec Zimmer & Dargan M. W. Frierson & Richard Startz & Peiran Liu, 2017. "Less than 2 °C warming by 2100 unlikely," Nature Climate Change, Nature, vol. 7(9), pages 637-641, September.
    4. Courtney G. Collins & Sarah C. Elmendorf & Robert D. Hollister & Greg H. R. Henry & Karin Clark & Anne D. Bjorkman & Isla H. Myers-Smith & Janet S. Prevéy & Isabel W. Ashton & Jakob J. Assmann & Juha , 2021. "Experimental warming differentially affects vegetative and reproductive phenology of tundra plants," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Benjamin Schwarz & Andrew D. Barnes & Madhav P. Thakur & Ulrich Brose & Marcel Ciobanu & Peter B. Reich & Roy L. Rich & Benjamin Rosenbaum & Artur Stefanski & Nico Eisenhauer, 2017. "Warming alters energetic structure and function but not resilience of soil food webs," Nature Climate Change, Nature, vol. 7(12), pages 895-900, December.
    6. Wolfgang Buermann & Matthias Forkel & Michael O’Sullivan & Stephen Sitch & Pierre Friedlingstein & Vanessa Haverd & Atul K. Jain & Etsushi Kato & Markus Kautz & Sebastian Lienert & Danica Lombardozzi , 2018. "Widespread seasonal compensation effects of spring warming on northern plant productivity," Nature, Nature, vol. 562(7725), pages 110-114, October.
    7. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    8. Trevor F. Keenan & Josh Gray & Mark A. Friedl & Michael Toomey & Gil Bohrer & David Y. Hollinger & J. William Munger & John O’Keefe & Hans Peter Schmid & Ian Sue Wing & Bai Yang & Andrew D. Richardson, 2014. "Net carbon uptake has increased through warming-induced changes in temperate forest phenology," Nature Climate Change, Nature, vol. 4(7), pages 598-604, July.
    9. Andrew D. Richardson & Koen Hufkens & Thomas Milliman & Donald M. Aubrecht & Morgan E. Furze & Bijan Seyednasrollah & Misha B. Krassovski & John M. Latimer & W. Robert Nettles & Ryan R. Heiderman & Je, 2018. "Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures," Nature, Nature, vol. 560(7718), pages 368-371, August.
    10. Stephen J. Thackeray & Peter A. Henrys & Deborah Hemming & James R. Bell & Marc S. Botham & Sarah Burthe & Pierre Helaouet & David G. Johns & Ian D. Jones & David I. Leech & Eleanor B. Mackay & Dario , 2016. "Phenological sensitivity to climate across taxa and trophic levels," Nature, Nature, vol. 535(7611), pages 241-245, July.
    11. Y. Vitasse & F. Baumgarten & C. M. Zohner & T. Rutishauser & B. Pietragalla & R. Gehrig & J. Dai & H. Wang & Y. Aono & T. H. Sparks, 2022. "The great acceleration of plant phenological shifts," Nature Climate Change, Nature, vol. 12(4), pages 300-302, April.
    12. Zhiyuan Ma & Huiying Liu & Zhaorong Mi & Zhenhua Zhang & Yonghui Wang & Wei Xu & Lin Jiang & Jin-Sheng He, 2017. "Climate warming reduces the temporal stability of plant community biomass production," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    13. Yongshuo H. Fu & Hongfang Zhao & Shilong Piao & Marc Peaucelle & Shushi Peng & Guiyun Zhou & Philippe Ciais & Mengtian Huang & Annette Menzel & Josep Peñuelas & Yang Song & Yann Vitasse & Zhenzhong Ze, 2015. "Declining global warming effects on the phenology of spring leaf unfolding," Nature, Nature, vol. 526(7571), pages 104-107, October.
    14. Huanjiong Wang & Chaoyang Wu & Philippe Ciais & Josep Peñuelas & Junhu Dai & Yongshuo Fu & Quansheng Ge, 2020. "Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    15. Madhav P. Thakur & Peter B. Reich & Sarah E. Hobbie & Artur Stefanski & Roy Rich & Karen E. Rice & William C. Eddy & Nico Eisenhauer, 2018. "Reduced feeding activity of soil detritivores under warmer and drier conditions," Nature Climate Change, Nature, vol. 8(1), pages 75-78, January.
    16. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    17. Cameron Dow & Albert Y. Kim & Loïc D’Orangeville & Erika B. Gonzalez-Akre & Ryan Helcoski & Valentine Herrmann & Grant L. Harley & Justin T. Maxwell & Ian R. McGregor & William J. McShea & Sean M. McM, 2022. "Warm springs alter timing but not total growth of temperate deciduous trees," Nature, Nature, vol. 608(7923), pages 552-557, August.
    18. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    19. Huiying Liu & Hao Wang & Nan Li & Junjiong Shao & Xuhui Zhou & Kees Jan Groenigen & Madhav P. Thakur, 2022. "Phenological mismatches between above- and belowground plant responses to climate warming," Nature Climate Change, Nature, vol. 12(1), pages 97-102, January.
    20. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Chen & Wenkuan Qin & Qiufang Zhang & Xudong Wang & Jiguang Feng & Mengguang Han & Yanhui Hou & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Margaret S. Torn & Biao Zhu, 2024. "Whole-soil warming leads to substantial soil carbon emission in an alpine grassland," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaroslav Koleček & Peter Adamík & Jiří Reif, 2020. "Shifts in migration phenology under climate change: temperature vs. abundance effects in birds," Climatic Change, Springer, vol. 159(2), pages 177-194, March.
    2. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    3. Roberto Novella-Fernandez & Roland Brandl & Stefan Pinkert & Dirk Zeuss & Christian Hof, 2023. "Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Conor C. Taff & J. Ryan. Shipley, 2023. "Inconsistent shifts in warming and temperature variability are linked to reduced avian fitness," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Ying Chen & Wenkuan Qin & Qiufang Zhang & Xudong Wang & Jiguang Feng & Mengguang Han & Yanhui Hou & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Margaret S. Torn & Biao Zhu, 2024. "Whole-soil warming leads to substantial soil carbon emission in an alpine grassland," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Qingshui Yu & Chenqi He & Mark A. Anthony & Bernhard Schmid & Arthur Gessler & Chen Yang & Danhua Zhang & Xiaofeng Ni & Yuhao Feng & Jiangling Zhu & Biao Zhu & Shaopeng Wang & Chengjun Ji & Zhiyao Tan, 2024. "Decoupled responses of plants and soil biota to global change across the world’s land ecosystems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    8. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    9. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    10. Jake F. Weltzin & Julio L. Betancourt & Benjamin I. Cook & Theresa M. Crimmins & Carolyn A. F. Enquist & Michael D. Gerst & John E. Gross & Geoffrey M. Henebry & Rebecca A. Hufft & Melissa A. Kenney &, 2020. "Seasonality of biological and physical systems as indicators of climatic variation and change," Climatic Change, Springer, vol. 163(4), pages 1755-1771, December.
    11. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    13. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    14. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Patrick Möhl & Raphael S. Büren & Erika Hiltbrunner, 2022. "Growth of alpine grassland will start and stop earlier under climate warming," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Andrew R. Pearson & Bethany R. S. Fox & John C. Hellstrom & Marcus J. Vandergoes & Sebastian F. M. Breitenbach & Russell N Drysdale & Sebastian N. Höpker & Christopher T. Wood & Martin Schiller & Adam, 2024. "Warming drives dissolved organic carbon export from pristine alpine soils," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37938-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.