IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234848.html
   My bibliography  Save this article

Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau

Author

Listed:
  • Yuke Zhou
  • Junfu Fan
  • Xiaoying Wang

Abstract

Under the context of global climate change, vegetation on the Tibetan Plateau (TP) has experienced significant changes during the past three decades. In this study, the spatiotemporal changes of growing season vegetation index (GSVI) on the TP were analyzed using various methods from pixel level to ecoregion level. In addition, a relative importance approach was employed to investigate the regulating effect of temperature and precipitation on vegetation. During the period of 1982–2012, vegetation on the TP was generally experiencing a greening trend, but with pronounced fluctuations. The interannual variation of the long-term GSVI was most significant in the Qaidam Basin and southern forest. At ecoregion scale, vegetation in the arid and frigid arid zones showed a browning tendency, with other ecoregions presenting greener trends. Over a large proportion of the TP, there exist change points in the GSVI time series, which were mainly concentered around the year 1996 and 2000. The Hurst exponent identified that a majority (88%) of the vegetation on the plateau would maintain a persistent trend in the future, which would mainly consist of undetermined development and greening trends. TP vegetation during the 1990s experienced more greening than in the 1980s or 2000s according to the interdecadal analysis. The long-term change in growing season vegetation was most positively correlated with the temperature during the same period, followed by the temperature in the preseason and postseason periods. There were more negative relationships of vegetation change with precipitation than with temperature. The relative contribution of the temperature to the vegetation changes exhibited an opposite spatial pattern to that of precipitation. Overall, the findings in this work provide an essential archive of decade-scale vegetation dynamics that may be helpful for projecting the future ecosystem dynamics on the Tibetan Plateau, such as the consistent greening.

Suggested Citation

  • Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
  • Handle: RePEc:plo:pone00:0234848
    DOI: 10.1371/journal.pone.0234848
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234848
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234848&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xufeng Wang & Jingfeng Xiao & Xin Li & Guodong Cheng & Mingguo Ma & Gaofeng Zhu & M. Altaf Arain & T. Andrew Black & Rachhpal S. Jassal, 2019. "No trends in spring and autumn phenology during the global warming hiatus," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    3. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    4. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    5. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    6. Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Zhang & Wei Zhou, 2021. "Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China," Land, MDPI, vol. 10(3), pages 1-21, March.
    2. Xiaoyu Deng & Liangxu Wu & Chengjin He & Huaiyong Shao, 2022. "Study on Spatiotemporal Variation Pattern of Vegetation Coverage on Qinghai–Tibet Plateau and the Analysis of Its Climate Driving Factors," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    3. Hanchen Duan & Yuan Qi & Wenping Kang & Jinlong Zhang & Hongwei Wang & Xiaofang Jiang, 2022. "Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengbiao Wu & Bin Chen & Chris Webster & Bing Xu & Peng Gong, 2023. "Improved human greenspace exposure equality during 21st century urbanization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    4. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    5. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    6. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    7. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    8. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    9. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. repec:diw:diwwpp:dp1647 is not listed on IDEAS
    12. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    13. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    14. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    15. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    16. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    17. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    18. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    19. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    20. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    21. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.