IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i4p326-d67369.html
   My bibliography  Save this article

Recent NDVI-Based Variation in Growth of Boreal Intact Forest Landscapes and Its Correlation with Climatic Variables

Author

Listed:
  • Jiaxin Jin

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Xianlin Road 163, Nanjing 210023, China
    International Institute for Earth System Science, Nanjing University, Xianlin Road 163, Nanjing 210023, China)

  • Ying Wang

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Xianlin Road 163, Nanjing 210023, China
    International Institute for Earth System Science, Nanjing University, Xianlin Road 163, Nanjing 210023, China)

  • Hong Jiang

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Xianlin Road 163, Nanjing 210023, China
    International Institute for Earth System Science, Nanjing University, Xianlin Road 163, Nanjing 210023, China)

  • Min Cheng

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Xianlin Road 163, Nanjing 210023, China
    International Institute for Earth System Science, Nanjing University, Xianlin Road 163, Nanjing 210023, China)

Abstract

Intact Forest Landscape (IFL) is of great value in protecting biodiversity and supporting core ecological processes. It is important to analyze the spatial variation in the growth dynamics of IFL. This study analyzed the change of the Normalized Difference Vegetation Index (NDVI) during the growing season (April–October) for boreal (45° N–70° N) IFLs and the correlation with climatic variables over the period of 2000–2013. Our results show 85.5% of boreal IFLs did not show a significant change in the NDVI after 2000, and only 10.2% and 4.3% exhibited a statistically significant increase (greening) or decrease (browning) in NDVI, respectively. About 60.9% of the greening boreal IFLs showed that an increasing NDVI was significantly correlated to climatic variables, especially an increasing growing season temperature (over 47.0%). For browning boreal IFLs, a decrease in temperature or an increase in dormancy period precipitation could be the prime reason for a significant decrease in the NDVI. However, about 64.6% of the browning boreal IFLs were insensitive to any of the climatic variables, indicating other factors, such as fire, had caused the browning. Although it did not show a significant trend, the NDVI of 51.3% of no-change boreal IFLs significantly correlated to climatic variables, especially growing season temperatures (over 37.6%).

Suggested Citation

  • Jiaxin Jin & Ying Wang & Hong Jiang & Min Cheng, 2016. "Recent NDVI-Based Variation in Growth of Boreal Intact Forest Landscapes and Its Correlation with Climatic Variables," Sustainability, MDPI, vol. 8(4), pages 1-10, April.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:326-:d:67369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/4/326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/4/326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shilong Piao & Jianguang Tan & Anping Chen & Yongshuo H. Fu & Philippe Ciais & Qiang Liu & Ivan A. Janssens & Sara Vicca & Zhenzhong Zeng & Su-Jong Jeong & Yue Li & Ranga B. Myneni & Shushi Peng & Mia, 2015. "Leaf onset in the northern hemisphere triggered by daytime temperature," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Yanfang Liu & Xiaojian Wei, 2017. "Forest Fragmentation and Driving Forces in Yingkou, Northeastern China," Sustainability, MDPI, vol. 9(3), pages 1-19, March.
    2. CholHyok Kang & Yili Zhang & Zhaofeng Wang & Linshan Liu & Huamin Zhang & Yilgwang Jo, 2017. "The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    3. Zhifang Pei & Shibo Fang & Wunian Yang & Lei Wang & Mingyan Wu & Qifei Zhang & Wei Han & Dao Nguyen Khoi, 2019. "The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015)," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongshuang Gu & Yuxin Qiao & Zhenxiang Xi & Sergio Rossi & Nicholas G. Smith & Jianquan Liu & Lei Chen, 2022. "Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:326-:d:67369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.