IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1315-d690896.html
   My bibliography  Save this article

A Slight Temperature Warming Trend Occurred over Lake Ontario from 2001 to 2018

Author

Listed:
  • Xiaoying Ouyang

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China)

  • Dongmei Chen

    (Department of Geography and Planning, Queen’s University, Kingston, ON K7L 3N6, Canada)

  • Shugui Zhou

    (The School of the Geo-Science & Technology, Zhengzhou University, Zhengzhou 450001, China)

  • Rui Zhang

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Jinxin Yang

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Guangcheng Hu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China)

  • Youjun Dou

    (Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China)

  • Qinhuo Liu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Satellite-derived lake surface water temperature (LSWT) measurements can be used for monitoring purposes. However, analyses based on the LSWT of Lake Ontario and the surrounding land surface temperature (LST) are scarce in the current literature. First, we provide an evaluation of the commonly used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived LSWT/LST (MOD11A1 and MYD11A1) using in situ measurements near the area of where Lake Ontario, the St. Lawrence River and the Rideau Canal meet. The MODIS datasets agreed well with ground sites measurements from 2015–2017, with an R 2 consistently over 0.90. Among the different ground measurement sites, the best results were achieved for Hill Island, with a correlation of 0.99 and centered root mean square difference (RMSD) of 0.73 K for Aqua/MYD nighttime. The validated MODIS datasets were used to analyze the temperature trend over the study area from 2001 to 2018, through a linear regression method with a Mann–Kendall test. A slight warming trend was found, with 95% confidence over the ground sites from 2003 to 2012 for the MYD11A1-Night datasets. The warming trend for the whole region, including both the lake and the land, was about 0.17 K year −1 for the MYD11A1 datasets during 2003–2012, whereas it was about 0.06 K year −1 during 2003–2018. There was also a spatial pattern of warming, but the trend for the lake region was not obviously different from that of the land region. For the monthly trends, the warming trends for September and October from 2013 to 2018 are much more apparent than those of other months.

Suggested Citation

  • Xiaoying Ouyang & Dongmei Chen & Shugui Zhou & Rui Zhang & Jinxin Yang & Guangcheng Hu & Youjun Dou & Qinhuo Liu, 2021. "A Slight Temperature Warming Trend Occurred over Lake Ontario from 2001 to 2018," Land, MDPI, vol. 10(12), pages 1-16, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1315-:d:690896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xufeng Wang & Jingfeng Xiao & Xin Li & Guodong Cheng & Mingguo Ma & Gaofeng Zhu & M. Altaf Arain & T. Andrew Black & Rachhpal S. Jassal, 2019. "No trends in spring and autumn phenology during the global warming hiatus," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. ., 2020. "Background: the problem of and response to climate change," Chapters, in: Effective Global Carbon Markets, chapter 2, pages 12-30, Edward Elgar Publishing.
    3. John C. Fyfe & Nathan P. Gillett & Francis W. Zwiers, 2013. "Overestimated global warming over the past 20 years," Nature Climate Change, Nature, vol. 3(9), pages 767-769, September.
    4. John C. Fyfe & Gerald A. Meehl & Matthew H. England & Michael E. Mann & Benjamin D. Santer & Gregory M. Flato & Ed Hawkins & Nathan P. Gillett & Shang-Ping Xie & Yu Kosaka & Neil C. Swart, 2016. "Making sense of the early-2000s warming slowdown," Nature Climate Change, Nature, vol. 6(3), pages 224-228, March.
    5. Iselin Medhaug & Martin B. Stolpe & Erich M. Fischer & Reto Knutti, 2017. "Reconciling controversies about the ‘global warming hiatus’," Nature, Nature, vol. 545(7652), pages 41-47, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    4. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Gary Froyland & Dimitrios Giannakis & Edoardo Luna & Joanna Slawinska, 2024. "Revealing trends and persistent cycles of non-autonomous systems with autonomous operator-theoretic techniques," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Francisco Estrada & Luis Filipe Martins & Pierre Perron, 2017. "Characterizing and attributing the warming trend in sea and land surface temperatures," Boston University - Department of Economics - Working Papers Series WP2017-009, Boston University - Department of Economics.
    7. Ting Zhang & Qian Gao & Huaming Xie & Qianjiao Wu & Yuwen Yu & Chukun Zhou & Zixian Chen & Hanqing Hu, 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    8. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    9. Loehle, Craig, 2014. "A minimal model for estimating climate sensitivity," Ecological Modelling, Elsevier, vol. 276(C), pages 80-84.
    10. Michael R. Grose & James S. Risbey & Penny H. Whetton, 2017. "Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’," Climatic Change, Springer, vol. 140(2), pages 307-322, January.
    11. Andrew W. Ellis & Michael L. Marston, 2020. "Late 1990s’ cool season climate shift in eastern North America," Climatic Change, Springer, vol. 162(3), pages 1385-1398, October.
    12. Dukpa Kim & Tatsushi Oka & Francisco Estrada & Pierre Perron, 2017. "Inference Related to Common Breaks in a Multivariate System with Joined Segmented Trends with Applications to Global and Hemispheric Temperatures," Boston University - Department of Economics - Working Papers Series WP2017-003, Boston University - Department of Economics.
    13. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    15. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
    17. Gilmar Veriato Fluzer Santos & Lucas Gamalel Cordeiro & Claudio Antonio Rojo & Edison Luiz Leismann, 2022. "A Review of the Anthropogenic Global Warming Consensus: An Econometric Forecast Based on the ARIMA Model of Paleoclimate Series," Applied Economics and Finance, Redfame publishing, vol. 9(3), pages 102-112, August.
    18. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    19. Bala Rajaratnam & Joseph Romano & Michael Tsiang & Noah Diffenbaugh, 2015. "Debunking the climate hiatus," Climatic Change, Springer, vol. 133(2), pages 129-140, November.
    20. Jing Peng & Fuqiang Yang & Li Dan & Xiba Tang, 2022. "Estimation of China’s Contribution to Global Greening over the Past Three Decades," Land, MDPI, vol. 11(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1315-:d:690896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.