IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31287-3.html
   My bibliography  Save this article

SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination

Author

Listed:
  • Estelle Vincendeau

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

  • Wenming Wei

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

  • Xuefei Zhang

    (Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children’s Hospital, Department of Genetics, Harvard Medical School
    Peking University)

  • Cyril Planchais

    (Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology)

  • Wei Yu

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

  • Hélène Lenden-Hasse

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

  • Thomas Cokelaer

    (Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques
    Institut Pasteur, Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle)

  • Juliana Pipoli da Fonseca

    (Institut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques)

  • Hugo Mouquet

    (Institut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology)

  • David J. Adams

    (Wellcome Trust Sanger Institute)

  • Frederick W. Alt

    (Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children’s Hospital, Department of Genetics, Harvard Medical School)

  • Stephen P. Jackson

    (Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge)

  • Gabriel Balmus

    (UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge)

  • Chloé Lescale

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

  • Ludovic Deriano

    (Institut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit)

Abstract

SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.

Suggested Citation

  • Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31287-3
    DOI: 10.1038/s41467-022-31287-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31287-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31287-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vera Boersma & Nathalie Moatti & Sandra Segura-Bayona & Marieke H. Peuscher & Jaco van der Torre & Brigitte A. Wevers & Alexandre Orthwein & Daniel Durocher & Jacqueline J. L. Jacobs, 2015. "MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection," Nature, Nature, vol. 521(7553), pages 537-540, May.
    2. Catherine T. Yan & Cristian Boboila & Ellen Kris Souza & Sonia Franco & Thomas R. Hickernell & Michael Murphy & Sunil Gumaste & Mark Geyer & Ali A. Zarrin & John P. Manis & Klaus Rajewsky & Frederick , 2007. "IgH class switching and translocations use a robust non-classical end-joining pathway," Nature, Nature, vol. 449(7161), pages 478-482, September.
    3. Xuefei Zhang & Yu Zhang & Zhaoqing Ba & Nia Kyritsis & Rafael Casellas & Frederick W. Alt, 2019. "Fundamental roles of chromatin loop extrusion in antibody class switching," Nature, Nature, vol. 575(7782), pages 385-389, November.
    4. Shengxian Gao & Sumin Feng & Shaokai Ning & Jingyan Liu & Huayu Zhao & Yixi Xu & Jinfeng Shang & Kejiao Li & Qing Li & Rong Guo & Dongyi Xu, 2018. "An OB-fold complex controls the repair pathways for DNA double-strand breaks," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. William C. Skarnes & Barry Rosen & Anthony P. West & Manousos Koutsourakis & Wendy Bushell & Vivek Iyer & Alejandro O. Mujica & Mark Thomas & Jennifer Harrow & Tony Cox & David Jackson & Jessica Sever, 2011. "A conditional knockout resource for the genome-wide study of mouse gene function," Nature, Nature, vol. 474(7351), pages 337-342, June.
    6. Inge Krijger & Bastian Föhr & Santiago Hernández Pérez & Estelle Vincendeau & Judit Serrat & Alexander Marc Thouin & Vivek Susvirkar & Chloé Lescale & Inés Paniagua & Liesbeth Hoekman & Simranjeet Kau, 2021. "MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Xiangyu Liu & Zhengping Shao & Wenxia Jiang & Brian J. Lee & Shan Zha, 2017. "PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    8. Hong Zan & Connie Tat & Zhifang Qiu & Julia R. Taylor & Justin A. Guerrero & Tian Shen & Paolo Casali, 2017. "Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination," Nature Communications, Nature, vol. 8(1), pages 1-16, April.
    9. Guotai Xu & J. Ross Chapman & Inger Brandsma & Jingsong Yuan & Martin Mistrik & Peter Bouwman & Jirina Bartkova & Ewa Gogola & Daniël Warmerdam & Marco Barazas & Janneke E. Jaspers & Kenji Watanabe & , 2015. "REV7 counteracts DNA double-strand break resection and affects PARP inhibition," Nature, Nature, vol. 521(7553), pages 541-544, May.
    10. Chloé Lescale & Vincent Abramowski & Marie Bedora-Faure & Valentine Murigneux & Gabriella Vera & David B. Roth & Patrick Revy & Jean-Pierre de Villartay & Ludovic Deriano, 2016. "RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    11. Fena Ochs & Gopal Karemore & Ezequiel Miron & Jill Brown & Hana Sedlackova & Maj-Britt Rask & Marko Lampe & Veronica Buckle & Lothar Schermelleh & Jiri Lukas & Claudia Lukas, 2019. "Stabilization of chromatin topology safeguards genome integrity," Nature, Nature, vol. 574(7779), pages 571-574, October.
    12. Sylvie M. Noordermeer & Salomé Adam & Dheva Setiaputra & Marco Barazas & Stephen J. Pettitt & Alexanda K. Ling & Michele Olivieri & Alejandro Álvarez-Quilón & Nathalie Moatti & Michal Zimmermann & Ste, 2018. "The shieldin complex mediates 53BP1-dependent DNA repair," Nature, Nature, vol. 560(7716), pages 117-121, August.
    13. Wei Yu & Chloé Lescale & Loelia Babin & Marie Bedora-Faure & Hélène Lenden-Hasse & Ludivine Baron & Caroline Demangel & José Yelamos & Erika Brunet & Ludovic Deriano, 2020. "Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    14. Shan Zha & Chunguang Guo & Cristian Boboila & Valentyn Oksenych & Hwei-Ling Cheng & Yu Zhang & Duane R. Wesemann & Grace Yuen & Harin Patel & Peter H. Goff & Richard L. Dubois & Frederick W. Alt, 2011. "ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks," Nature, Nature, vol. 469(7329), pages 250-254, January.
    15. Andrea L. Bredemeyer & Girdhar G. Sharma & Ching-Yu Huang & Beth A. Helmink & Laura M. Walker & Katrina C. Khor & Beth Nuskey & Kathleen E. Sullivan & Tej K. Pandita & Craig H. Bassing & Barry P. Slec, 2006. "ATM stabilizes DNA double-strand-break complexes during V(D)J recombination," Nature, Nature, vol. 442(7101), pages 466-470, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Yijiang Xu & Hang Zhou & Ginell Post & Hong Zan & Paolo Casali, 2022. "Rad52 mediates class-switch DNA recombination to IgD," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Takuya Tsujino & Tomoaki Takai & Kunihiko Hinohara & Fu Gui & Takeshi Tsutsumi & Xiao Bai & Chenkui Miao & Chao Feng & Bin Gui & Zsofia Sztupinszki & Antoine Simoneau & Ning Xie & Ladan Fazli & Xuesen, 2023. "CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Zeliha Yalçin & Shiu Yeung Lam & Marieke H. Peuscher & Jaco Torre & Sha Zhu & Prasanna V. Iyengar & Daniel Salas-Lloret & Inge Krijger & Nathalie Moatti & Ruben Lugt & Mattia Falcone & Aurora Cerutti , 2024. "UBE2D3 facilitates NHEJ by orchestrating ATM signalling through multi-level control of RNF168," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Jian Ma & Yingke Zhou & Penglin Pan & Haixin Yu & Zixi Wang & Lei Lily Li & Bing Wang & Yuqian Yan & Yunqian Pan & Qi Ye & Tianjie Liu & Xiaoyu Feng & Shan Xu & Ke Wang & Xinyang Wang & Yanlin Jian & , 2023. "TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Alexandra K. Davies & Julian E. Alecu & Marvin Ziegler & Catherine G. Vasilopoulou & Fabrizio Merciai & Hellen Jumo & Wardiya Afshar-Saber & Mustafa Sahin & Darius Ebrahimi-Fakhari & Georg H. H. Borne, 2022. "AP-4-mediated axonal transport controls endocannabinoid production in neurons," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Anastasiya Kishkevich & Sanjeeta Tamang & Michael O. Nguyen & Judith Oehler & Elena Bulmaga & Christos Andreadis & Carl A. Morrow & Manisha Jalan & Fekret Osman & Matthew C. Whitby, 2022. "Rad52’s DNA annealing activity drives template switching associated with restarted DNA replication," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Jennifer B. Shah & Dana Pueschl & Bradley Wubbenhorst & Mengyao Fan & John Pluta & Kurt D’Andrea & Anna P. Hubert & Jake S. Shilan & Wenting Zhou & Adam A. Kraya & Alba Llop Guevara & Catherine Ruan &, 2022. "Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Larissa Seifert & Gunther Zahner & Catherine Meyer-Schwesinger & Naemi Hickstein & Silke Dehde & Sonia Wulf & Sarah M. S. Köllner & Renke Lucas & Dominik Kylies & Sarah Froembling & Stephanie Zielinsk, 2023. "The classical pathway triggers pathogenic complement activation in membranous nephropathy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Ke Cong & Nathan MacGilvary & Silviana Lee & Shannon G. MacLeod & Jennifer Calvo & Min Peng & Arne Nedergaard Kousholt & Tovah A. Day & Sharon B. Cantor, 2024. "FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Yan Geng & Lin Li & Jie Yan & Kevin Liu & Aizhen Yang & Lin Zhang & Yingzhi Shen & Han Gao & Xuefeng Wu & Imre Noth & Yong Huang & Junling Liu & Xuemei Fan, 2022. "PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Lucia Balazova & Miroslav Balaz & Carla Horvath & Áron Horváth & Caroline Moser & Zuzana Kovanicova & Adhideb Ghosh & Umesh Ghoshdastider & Vissarion Efthymiou & Elke Kiehlmann & Wenfei Sun & Hua Dong, 2021. "GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    20. Lama AlAbdi & Sateesh Maddirevula & Hanan E. Shamseldin & Ebtissal Khouj & Rana Helaby & Halima Hamid & Aisha Almulhim & Mais O. Hashem & Firdous Abdulwahab & Omar Abouyousef & Mashael Alqahtani & Nor, 2023. "Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31287-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.