IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7716d10.1038_s41586-018-0340-7.html
   My bibliography  Save this article

The shieldin complex mediates 53BP1-dependent DNA repair

Author

Listed:
  • Sylvie M. Noordermeer

    (Mount Sinai Hospital, Toronto
    Leiden University Medical Center)

  • Salomé Adam

    (Mount Sinai Hospital, Toronto)

  • Dheva Setiaputra

    (Mount Sinai Hospital, Toronto)

  • Marco Barazas

    (Oncode Institute, Netherlands Cancer Institute)

  • Stephen J. Pettitt

    (The Institute of Cancer Research)

  • Alexanda K. Ling

    (University of Toronto, Toronto)

  • Michele Olivieri

    (Mount Sinai Hospital, Toronto
    University of Toronto, Toronto)

  • Alejandro Álvarez-Quilón

    (Mount Sinai Hospital, Toronto)

  • Nathalie Moatti

    (Mount Sinai Hospital, Toronto)

  • Michal Zimmermann

    (Mount Sinai Hospital, Toronto)

  • Stefano Annunziato

    (Oncode Institute, Netherlands Cancer Institute)

  • Dragomir B. Krastev

    (The Institute of Cancer Research)

  • Feifei Song

    (The Institute of Cancer Research)

  • Inger Brandsma

    (The Institute of Cancer Research)

  • Jessica Frankum

    (The Institute of Cancer Research)

  • Rachel Brough

    (The Institute of Cancer Research)

  • Alana Sherker

    (Mount Sinai Hospital, Toronto
    University of Toronto, Toronto)

  • Sébastien Landry

    (Mount Sinai Hospital, Toronto)

  • Rachel K. Szilard

    (Mount Sinai Hospital, Toronto)

  • Meagan M. Munro

    (Mount Sinai Hospital, Toronto)

  • Andrea McEwan

    (Mount Sinai Hospital, Toronto)

  • Théo Goullet de Rugy

    (Mount Sinai Hospital, Toronto)

  • Zhen-Yuan Lin

    (Mount Sinai Hospital, Toronto)

  • Traver Hart

    (University of Texas MD Anderson Cancer Center)

  • Jason Moffat

    (University of Toronto, Toronto
    University of Toronto, Toronto)

  • Anne-Claude Gingras

    (Mount Sinai Hospital, Toronto
    University of Toronto, Toronto)

  • Alberto Martin

    (University of Toronto, Toronto)

  • Haico Attikum

    (Leiden University Medical Center)

  • Jos Jonkers

    (Oncode Institute, Netherlands Cancer Institute)

  • Christopher J. Lord

    (The Institute of Cancer Research)

  • Sven Rottenberg

    (Oncode Institute, Netherlands Cancer Institute
    Vetsuisse Faculty, University of Bern)

  • Daniel Durocher

    (Mount Sinai Hospital, Toronto
    University of Toronto, Toronto)

Abstract

53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14–9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.

Suggested Citation

  • Sylvie M. Noordermeer & Salomé Adam & Dheva Setiaputra & Marco Barazas & Stephen J. Pettitt & Alexanda K. Ling & Michele Olivieri & Alejandro Álvarez-Quilón & Nathalie Moatti & Michal Zimmermann & Ste, 2018. "The shieldin complex mediates 53BP1-dependent DNA repair," Nature, Nature, vol. 560(7716), pages 117-121, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0340-7
    DOI: 10.1038/s41586-018-0340-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0340-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0340-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bert van de Kooij & Alex Kruswick & Haico van Attikum & Michael B. Yaffe, 2022. "Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yuandi Gao & Laure Guitton-Sert & Julien Dessapt & Yan Coulombe & Amélie Rodrigue & Larissa Milano & Andréanne Blondeau & Nicolai Balle Larsen & Julien P. Duxin & Samer Hussein & Amélie Fradet-Turcott, 2023. "A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Ke Cong & Nathan MacGilvary & Silviana Lee & Shannon G. MacLeod & Jennifer Calvo & Min Peng & Arne Nedergaard Kousholt & Tovah A. Day & Sharon B. Cantor, 2024. "FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Takuya Tsujino & Tomoaki Takai & Kunihiko Hinohara & Fu Gui & Takeshi Tsutsumi & Xiao Bai & Chenkui Miao & Chao Feng & Bin Gui & Zsofia Sztupinszki & Antoine Simoneau & Ning Xie & Ladan Fazli & Xuesen, 2023. "CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Jian Ma & Yingke Zhou & Penglin Pan & Haixin Yu & Zixi Wang & Lei Lily Li & Bing Wang & Yuqian Yan & Yunqian Pan & Qi Ye & Tianjie Liu & Xiaoyu Feng & Shan Xu & Ke Wang & Xinyang Wang & Yanlin Jian & , 2023. "TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0340-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.