IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v474y2011i7351d10.1038_nature10163.html
   My bibliography  Save this article

A conditional knockout resource for the genome-wide study of mouse gene function

Author

Listed:
  • William C. Skarnes

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Barry Rosen

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Anthony P. West

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Manousos Koutsourakis

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Wendy Bushell

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Vivek Iyer

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Alejandro O. Mujica

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton
    Present addresses: Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA (A.O.M.); RIKEN Omics Science Center, Yokohama City, Japan (J.S.); Hopkirk Institute, Massey University, New Zealand (P.B.).)

  • Mark Thomas

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Jennifer Harrow

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Tony Cox

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • David Jackson

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

  • Jessica Severin

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton
    Present addresses: Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA (A.O.M.); RIKEN Omics Science Center, Yokohama City, Japan (J.S.); Hopkirk Institute, Massey University, New Zealand (P.B.).)

  • Patrick Biggs

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton
    Present addresses: Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA (A.O.M.); RIKEN Omics Science Center, Yokohama City, Japan (J.S.); Hopkirk Institute, Massey University, New Zealand (P.B.).)

  • Jun Fu

    (Biotechnologisches Zentrum, TU Dresden)

  • Michael Nefedov

    (Children’s Hospital Oakland Research Institute)

  • Pieter J. de Jong

    (Children’s Hospital Oakland Research Institute)

  • A. Francis Stewart

    (Biotechnologisches Zentrum, TU Dresden)

  • Allan Bradley

    (Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton)

Abstract

Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.

Suggested Citation

  • William C. Skarnes & Barry Rosen & Anthony P. West & Manousos Koutsourakis & Wendy Bushell & Vivek Iyer & Alejandro O. Mujica & Mark Thomas & Jennifer Harrow & Tony Cox & David Jackson & Jessica Sever, 2011. "A conditional knockout resource for the genome-wide study of mouse gene function," Nature, Nature, vol. 474(7351), pages 337-342, June.
  • Handle: RePEc:nat:nature:v:474:y:2011:i:7351:d:10.1038_nature10163
    DOI: 10.1038/nature10163
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10163
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Lucia Balazova & Miroslav Balaz & Carla Horvath & Áron Horváth & Caroline Moser & Zuzana Kovanicova & Adhideb Ghosh & Umesh Ghoshdastider & Vissarion Efthymiou & Elke Kiehlmann & Wenfei Sun & Hua Dong, 2021. "GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Larissa Seifert & Gunther Zahner & Catherine Meyer-Schwesinger & Naemi Hickstein & Silke Dehde & Sonia Wulf & Sarah M. S. Köllner & Renke Lucas & Dominik Kylies & Sarah Froembling & Stephanie Zielinsk, 2023. "The classical pathway triggers pathogenic complement activation in membranous nephropathy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Lama AlAbdi & Sateesh Maddirevula & Hanan E. Shamseldin & Ebtissal Khouj & Rana Helaby & Halima Hamid & Aisha Almulhim & Mais O. Hashem & Firdous Abdulwahab & Omar Abouyousef & Mashael Alqahtani & Nor, 2023. "Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Chao Huang & Wenting Zhu & Qing Li & Yuchen Lei & Xi Chen & Shaorui Liu & Dianyu Chen & Lijian Zhong & Feng Gao & Shujie Fu & Danyang He & Jinsong Li & Heping Xu, 2024. "Antibody Fc-receptor FcεR1γ stabilizes cell surface receptors in group 3 innate lymphoid cells and promotes anti-infection immunity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Yan Geng & Lin Li & Jie Yan & Kevin Liu & Aizhen Yang & Lin Zhang & Yingzhi Shen & Han Gao & Xuefeng Wu & Imre Noth & Yong Huang & Junling Liu & Xuemei Fan, 2022. "PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Debashish U. Menon & Oleksandr Kirsanov & Christopher B. Geyer & Terry Magnuson, 2021. "Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Delfina M. Romero & Karine Poirier & Richard Belvindrah & Imane Moutkine & Anne Houllier & Anne-Gaëlle LeMoing & Florence Petit & Anne Boland & Stephan C. Collins & Mariano Soiza-Reilly & Binnaz Yalci, 2022. "Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Veronica L. Li & Shuke Xiao & Pascal Schlosser & Nora Scherer & Amanda L. Wiggenhorn & Jan Spaas & Alan Sheng-Hwa Tung & Edward D. Karoly & Anna Köttgen & Jonathan Z. Long, 2024. "SLC17A1/3 transporters mediate renal excretion of Lac-Phe in mice and humans," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Alexandra K. Davies & Julian E. Alecu & Marvin Ziegler & Catherine G. Vasilopoulou & Fabrizio Merciai & Hellen Jumo & Wardiya Afshar-Saber & Mustafa Sahin & Darius Ebrahimi-Fakhari & Georg H. H. Borne, 2022. "AP-4-mediated axonal transport controls endocannabinoid production in neurons," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Jana Hädicke & Mario Engelmann, 2013. "Social Investigation and Long-Term Recognition Memory Performance in 129S1/SvImJ and C57BL/6JOlaHsd Mice and Their Hybrids," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    14. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:474:y:2011:i:7351:d:10.1038_nature10163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.