IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53404-0.html
   My bibliography  Save this article

OTUD5 promotes end-joining of deprotected telomeres by promoting ATM-dependent phosphorylation of KAP1S824

Author

Listed:
  • Shiu Yeung Lam

    (The Netherlands Cancer Institute)

  • Ruben Lugt

    (The Netherlands Cancer Institute)

  • Aurora Cerutti

    (The Netherlands Cancer Institute)

  • Zeliha Yalçin

    (The Netherlands Cancer Institute)

  • Alexander M. Thouin

    (The Netherlands Cancer Institute)

  • Marco Simonetta

    (The Netherlands Cancer Institute)

  • Jacqueline J. L. Jacobs

    (The Netherlands Cancer Institute)

Abstract

Appropriate repair of damaged DNA and the suppression of DNA damage responses at telomeres are essential to preserve genome stability. DNA damage response (DDR) signaling consists of cascades of kinase-driven phosphorylation events, fine-tuned by proteolytic and regulatory ubiquitination. It is not fully understood how crosstalk between these two major classes of post-translational modifications impact DNA repair at deprotected telomeres. Hence, we performed a functional genetic screen to search for ubiquitin system factors that promote KAP1S824 phosphorylation, a robust DDR marker at deprotected telomeres. We identified that the OTU family deubiquitinase (DUB) OTUD5 promotes KAP1S824 phosphorylation by facilitating ATM activation, through stabilization of the ubiquitin ligase UBR5 that is required for DNA damage-induced ATM activity. Loss of OTUD5 impairs KAP1S824 phosphorylation, which suppresses end-joining mediated DNA repair at deprotected telomeres and at DNA breaks in heterochromatin. Moreover, we identified an unexpected role for the heterochromatin factor KAP1 in suppressing DNA repair at telomeres. Altogether our work reveals an important role for OTUD5 and KAP1 in relaying DDR-dependent kinase signaling to the control of DNA repair at telomeres and heterochromatin.

Suggested Citation

  • Shiu Yeung Lam & Ruben Lugt & Aurora Cerutti & Zeliha Yalçin & Alexander M. Thouin & Marco Simonetta & Jacqueline J. L. Jacobs, 2024. "OTUD5 promotes end-joining of deprotected telomeres by promoting ATM-dependent phosphorylation of KAP1S824," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53404-0
    DOI: 10.1038/s41467-024-53404-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53404-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53404-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vera Boersma & Nathalie Moatti & Sandra Segura-Bayona & Marieke H. Peuscher & Jaco van der Torre & Brigitte A. Wevers & Alexandre Orthwein & Daniel Durocher & Jacqueline J. L. Jacobs, 2015. "MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection," Nature, Nature, vol. 521(7553), pages 537-540, May.
    2. Larissa Grolimund & Eric Aeby & Romain Hamelin & Florence Armand & Diego Chiappe & Marc Moniatte & Joachim Lingner, 2013. "A quantitative telomeric chromatin isolation protocol identifies different telomeric states," Nature Communications, Nature, vol. 4(1), pages 1-12, December.
    3. Inge Krijger & Bastian Föhr & Santiago Hernández Pérez & Estelle Vincendeau & Judit Serrat & Alexander Marc Thouin & Vivek Susvirkar & Chloé Lescale & Inés Paniagua & Liesbeth Hoekman & Simranjeet Kau, 2021. "MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Bert van de Kooij & Alex Kruswick & Haico van Attikum & Michael B. Yaffe, 2022. "Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Nadya Dimitrova & Yi-Chun M. Chen & David L. Spector & Titia de Lange, 2008. "53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility," Nature, Nature, vol. 456(7221), pages 524-528, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeliha Yalçin & Shiu Yeung Lam & Marieke H. Peuscher & Jaco Torre & Sha Zhu & Prasanna V. Iyengar & Daniel Salas-Lloret & Inge Krijger & Nathalie Moatti & Ruben Lugt & Mattia Falcone & Aurora Cerutti , 2024. "UBE2D3 facilitates NHEJ by orchestrating ATM signalling through multi-level control of RNF168," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Yajie Sun & Jeffrey Patterson-Fortin & Sen Han & Zhe Li & Zuzanna Nowicka & Yuna Hirohashi & Susan Kilgas & Jae Kyo Yi & Alexander Spektor & Wojciech Fendler & Panagiotis A. Konstantinopoulos & Dipanj, 2024. "53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Zhusheng Huang & Rong Gu & Shiqian Huang & Qian Chen & Jing Yan & Xiaoya Cui & Haojie Jiang & Dan Yao & Chuang Shen & Jiayue Su & Tao Liu & Jinhui Wu & Zhimin Luo & Yiqiao Hu & Ahu Yuan, 2024. "Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Daniel J. Laverty & Shiv K. Gupta & Gary A. Bradshaw & Alexander S. Hunter & Brett L. Carlson & Nery Matias Calmo & Jiajia Chen & Shulan Tian & Jann N. Sarkaria & Zachary D. Nagel, 2024. "ATM inhibition exploits checkpoint defects and ATM-dependent double strand break repair in TP53-mutant glioblastoma," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Hanna Braun & Ziyan Xu & Fiona Chang & Nikenza Viceconte & Grishma Rane & Michal Levin & Liudmyla Lototska & Franziska Roth & Alexia Hillairet & Albert Fradera-Sola & Vartika Khanchandani & Zi Wayne S, 2023. "ZNF524 directly interacts with telomeric DNA and supports telomere integrity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Qing Hu & Jose Espejo Valle-Inclán & Rashmi Dahiya & Alison Guyer & Alice Mazzagatti & Elizabeth G. Maurais & Justin L. Engel & Huiming Lu & Anthony J. Davis & Isidro Cortés-Ciriano & Peter Ly, 2024. "Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Uta Eberlein & Michel Peper & Maria Fernández & Michael Lassmann & Harry Scherthan, 2015. "Calibration of the γ-H2AX DNA Double Strand Break Focus Assay for Internal Radiation Exposure of Blood Lymphocytes," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-11, April.
    12. Sameer Bikram Shah & Youhang Li & Shibo Li & Qing Hu & Tong Wu & Yanmeng Shi & Tran Nguyen & Isaac Ive & Linda Shi & Hailong Wang & Xiaohua Wu, 2024. "53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR)," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Bert Kooij & Fenna J. Wal & Magdalena B. Rother & Wouter W. Wiegant & Pau Creixell & Merula Stout & Brian A. Joughin & Julia Vornberger & Matthias Altmeyer & Marcel A. T. M. Vugt & Michael B. Yaffe & , 2024. "The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Jian Ma & Yingke Zhou & Penglin Pan & Haixin Yu & Zixi Wang & Lei Lily Li & Bing Wang & Yuqian Yan & Yunqian Pan & Qi Ye & Tianjie Liu & Xiaoyu Feng & Shan Xu & Ke Wang & Xinyang Wang & Yanlin Jian & , 2023. "TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53404-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.