IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i4p703-718.html
   My bibliography  Save this article

Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks

Author

Listed:
  • Chrysafis Vogiatzis

    (Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411;)

  • Mustafa Can Camur

    (Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180)

Abstract

In this work, we propose a novel centrality metric, referred to as star centrality , which incorporates information from the closed neighborhood of a node, rather than solely from the node itself, when calculating its topological importance. More specifically, we focus on degree centrality and show that in the complex protein–protein interaction networks, it is a naive metric that can lead to misclassifying protein importance. For our extension of degree centrality when considering stars, we derive its computational complexity, provide a mathematical formulation, and propose two approximation algorithms that are shown to be efficient in practice. We portray the success of this new metric in protein–protein interaction networks when predicting protein essentiality in several organisms, including the well-studied Saccharomyces cerevisiae , Helicobacter pylori , and Caenorhabditis elegans , where star centrality is shown to significantly outperform other nodal centrality metrics at detecting essential proteins. We also analyze the average and worst-case performance of the two approximation algorithms in practice and show that they are viable options for computing star centrality in very large-scale protein–protein interaction networks, such as the human proteome, where exact methodologies are bound to be time and memory intensive.

Suggested Citation

  • Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:4:p:703-718
    DOI: 10.1287/ijoc.2018.0872
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0872
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William C. Skarnes & Barry Rosen & Anthony P. West & Manousos Koutsourakis & Wendy Bushell & Vivek Iyer & Alejandro O. Mujica & Mark Thomas & Jennifer Harrow & Tony Cox & David Jackson & Jessica Sever, 2011. "A conditional knockout resource for the genome-wide study of mouse gene function," Nature, Nature, vol. 474(7351), pages 337-342, June.
    2. Ravi S. Kamath & Andrew G. Fraser & Yan Dong & Gino Poulin & Richard Durbin & Monica Gotta & Alexander Kanapin & Nathalie Le Bot & Sergio Moreno & Marc Sohrmann & David P. Welchman & Peder Zipperlen &, 2003. "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi," Nature, Nature, vol. 421(6920), pages 231-237, January.
    3. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Erratum: Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6997), pages 380-380, July.
    4. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    5. Stephen P. Borgatti, 2006. "Identifying sets of key players in a social network," Computational and Mathematical Organization Theory, Springer, vol. 12(1), pages 21-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    2. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    3. Ali Tosyali & Jeongsub Choi & Byunghoon Kim & Hoshin Lee & Myong K. Jeong, 2021. "A dynamic graph-based approach to ranking firms for identifying key players using inter-firm transactions," Annals of Operations Research, Springer, vol. 303(1), pages 5-27, August.
    4. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
    2. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    3. Patrick C F Buchholz & Catharina Zeil & Jürgen Pleiss, 2018. "The scale-free nature of protein sequence space," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
    4. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    5. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    6. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    7. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Fabio Cumbo & Paola Paci & Daniele Santoni & Luisa Di Paola & Alessandro Giuliani, 2014. "GIANT: A Cytoscape Plugin for Modular Networks," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    9. Weijiang Li & Hiroyuki Kurata, 2008. "Visualizing Global Properties of Large Complex Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-4, July.
    10. Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
    11. Changki Hong & Jeewon Hwang & Kwang-Hyun Cho & Insik Shin, 2015. "An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    12. Seah Choon Sen & Shahreen Kasim & Mohd Farhan Md Fudzee & Rusli Abdullah & Rodziah Atan, 2017. "Random Walk From Different Perspective," Acta Electronica Malaysia (AEM), Zibeline International Publishing, vol. 1(2), pages 26-27, November.
    13. Gabor I Simko & Peter Csermely, 2013. "Nodes Having a Major Influence to Break Cooperation Define a Novel Centrality Measure: Game Centrality," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    14. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    15. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    16. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    17. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    18. Goldrosen, Nicholas, 2024. "Is corrections officers' use of illegal force networked? Network structure, brokerage, and key players in the New York City Department of Correction," Journal of Criminal Justice, Elsevier, vol. 92(C).
    19. Mark J. O. Bagley, 2019. "Networks, geography and the survival of the firm," Journal of Evolutionary Economics, Springer, vol. 29(4), pages 1173-1209, September.
    20. Jin-Hyuck Jeong & Jun-Seok Han & Youngae Jung & Seung-Min Lee & So-Hyun Park & Mooncheol Park & Min-Gi Shin & Nami Kim & Mi Sun Kang & Seokho Kim & Kwang-Pyo Lee & Ki-Sun Kwon & Chun-A. Kim & Yong Ryo, 2023. "A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:4:p:703-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.