IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32861-5.html
   My bibliography  Save this article

MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner

Author

Listed:
  • Inés Paniagua

    (The Netherlands Cancer Institute)

  • Zainab Tayeh

    (The Netherlands Cancer Institute)

  • Mattia Falcone

    (The Netherlands Cancer Institute)

  • Santiago Hernández Pérez

    (The Netherlands Cancer Institute)

  • Aurora Cerutti

    (The Netherlands Cancer Institute)

  • Jacqueline J. L. Jacobs

    (The Netherlands Cancer Institute)

Abstract

Protection of stalled replication forks is essential to prevent genome instability, a major driving force of tumorigenesis. Several key regulators of DNA double-stranded break (DSB) repair, including 53BP1 and RIF1, have been implicated in fork protection. MAD2L2, also known as REV7, plays an important role downstream of 53BP1/RIF1 by counteracting resection at DSBs in the recently discovered shieldin complex. The ability to bind and counteract resection at exposed DNA ends at DSBs makes MAD2L2/shieldin a prime candidate for also suppressing nucleolytic processing at stalled replication forks. However, the function of MAD2L2/shieldin outside of DNA repair is unknown. Here we address this by using genetic and single-molecule analyses and find that MAD2L2 is required for protecting and restarting stalled replication forks. MAD2L2 loss leads to uncontrolled MRE11-dependent resection of stalled forks and single-stranded DNA accumulation, which causes irreparable genomic damage. Unexpectedly, MAD2L2 limits resection at stalled forks independently of shieldin, since fork protection remained unaffected by shieldin loss. Instead, MAD2L2 cooperates with the DNA polymerases REV3L and REV1 to promote fork stability. Thus, MAD2L2 suppresses aberrant nucleolytic processing both at DSBs and stalled replication forks by differentially engaging shieldin and REV1/REV3L, respectively.

Suggested Citation

  • Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32861-5
    DOI: 10.1038/s41467-022-32861-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32861-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32861-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sofija Mijic & Ralph Zellweger & Nagaraja Chappidi & Matteo Berti & Kurt Jacobs & Karun Mutreja & Sebastian Ursich & Arnab Ray Chaudhuri & Andre Nussenzweig & Pavel Janscak & Massimo Lopes, 2017. "Replication fork reversal triggers fork degradation in BRCA2-defective cells," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Vera Boersma & Nathalie Moatti & Sandra Segura-Bayona & Marieke H. Peuscher & Jaco van der Torre & Brigitte A. Wevers & Alexandre Orthwein & Daniel Durocher & Jacqueline J. L. Jacobs, 2015. "MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection," Nature, Nature, vol. 521(7553), pages 537-540, May.
    3. Guotai Xu & J. Ross Chapman & Inger Brandsma & Jingsong Yuan & Martin Mistrik & Peter Bouwman & Jirina Bartkova & Ewa Gogola & Daniël Warmerdam & Marco Barazas & Janneke E. Jaspers & Kenji Watanabe & , 2015. "REV7 counteracts DNA double-strand break resection and affects PARP inhibition," Nature, Nature, vol. 521(7553), pages 541-544, May.
    4. Joost Schimmel & Núria Muñoz-Subirana & Hanneke Kool & Robin Schendel & Marcel Tijsterman, 2021. "Small tandem DNA duplications result from CST-guided Pol α-primase action at DNA break termini," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Shengxian Gao & Sumin Feng & Shaokai Ning & Jingyan Liu & Huayu Zhao & Yixi Xu & Jinfeng Shang & Kejiao Li & Qing Li & Rong Guo & Dongyi Xu, 2018. "An OB-fold complex controls the repair pathways for DNA double-strand breaks," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Michal Zimmermann & Olga Murina & Martin A. M. Reijns & Angelo Agathanggelou & Rachel Challis & Žygimantė Tarnauskaitė & Morwenna Muir & Adeline Fluteau & Michael Aregger & Andrea McEwan & Wei Yuan & , 2018. "CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions," Nature, Nature, vol. 559(7713), pages 285-289, July.
    7. Sylvie M. Noordermeer & Salomé Adam & Dheva Setiaputra & Marco Barazas & Stephen J. Pettitt & Alexanda K. Ling & Michele Olivieri & Alejandro Álvarez-Quilón & Nathalie Moatti & Michal Zimmermann & Ste, 2018. "The shieldin complex mediates 53BP1-dependent DNA repair," Nature, Nature, vol. 560(7716), pages 117-121, August.
    8. Chirantani Mukherjee & Vivek Tripathi & Eleni Maria Manolika & Anne Margriet Heijink & Giulia Ricci & Sarra Merzouk & H. Rudolf Boer & Jeroen Demmers & Marcel A. T. M. Vugt & Arnab Ray Chaudhuri, 2019. "RIF1 promotes replication fork protection and efficient restart to maintain genome stability," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    9. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 535(7612), pages 382-387, July.
    10. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Erratum: Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 539(7629), pages 456-456, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Li & Shuchen Fan & Pan Li & Yuzhen Bai & Ye Wang & Yueyun Cui & Mengdi Li & Ruru Wang & Yuan Shao & Yingying Wang & Shuo Zheng & Rong Wang & Lijun Gao & Miaomiao Li & Yuanyuan Zheng & Fengting Wa, 2024. "A sophisticated mechanism governs Pol ζ activity in response to replication stress," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    3. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Yajie Sun & Jeffrey Patterson-Fortin & Sen Han & Zhe Li & Zuzanna Nowicka & Yuna Hirohashi & Susan Kilgas & Jae Kyo Yi & Alexander Spektor & Wojciech Fendler & Panagiotis A. Konstantinopoulos & Dipanj, 2024. "53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Sameer Bikram Shah & Youhang Li & Shibo Li & Qing Hu & Tong Wu & Yanmeng Shi & Tran Nguyen & Isaac Ive & Linda Shi & Hailong Wang & Xiaohua Wu, 2024. "53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR)," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Takuya Tsujino & Tomoaki Takai & Kunihiko Hinohara & Fu Gui & Takeshi Tsutsumi & Xiao Bai & Chenkui Miao & Chao Feng & Bin Gui & Zsofia Sztupinszki & Antoine Simoneau & Ning Xie & Ladan Fazli & Xuesen, 2023. "CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Natasha Ramakrishnan & Tyler M. Weaver & Lindsey N. Aubuchon & Ayda Woldegerima & Taylor Just & Kevin Song & Alessandro Vindigni & Bret D. Freudenthal & Priyanka Verma, 2024. "Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Rishi Kumar Jaiswal & Kai-Hang Lei & Megan Chastain & Yuan Wang & Olga Shiva & Shan Li & Zhongsheng You & Peter Chi & Weihang Chai, 2023. "CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Antonios Revythis & Anu Limbu & Christos Mikropoulos & Aruni Ghose & Elisabet Sanchez & Matin Sheriff & Stergios Boussios, 2022. "Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    19. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Nagham Ghaddar & Yves Corda & Pierre Luciano & Martina Galli & Ylli Doksani & Vincent Géli, 2023. "The COMPASS subunit Spp1 protects nascent DNA at the Tus/Ter replication fork barrier by limiting DNA availability to nucleases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32861-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.