IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30154-5.html
   My bibliography  Save this article

The dopamine transporter antiports potassium to increase the uptake of dopamine

Author

Listed:
  • Solveig G. Schmidt

    (University of Copenhagen)

  • Mette Galsgaard Malle

    (University of Copenhagen
    University of Copenhagen)

  • Anne Kathrine Nielsen

    (University of Copenhagen
    University of Copenhagen)

  • Søren S.-R. Bohr

    (University of Copenhagen
    University of Copenhagen)

  • Ciara F. Pugh

    (University of Copenhagen)

  • Jeppe C. Nielsen

    (University of Copenhagen)

  • Ida H. Poulsen

    (University of Copenhagen)

  • Kasper D. Rand

    (University of Copenhagen)

  • Nikos S. Hatzakis

    (University of Copenhagen
    University of Copenhagen)

  • Claus J. Loland

    (University of Copenhagen)

Abstract

The dopamine transporter facilitates dopamine reuptake from the extracellular space to terminate neurotransmission. The transporter belongs to the neurotransmitter:sodium symporter family, which includes transporters for serotonin, norepinephrine, and GABA that utilize the Na+ gradient to drive the uptake of substrate. Decades ago, it was shown that the serotonin transporter also antiports K+, but investigations of K+-coupled transport in other neurotransmitter:sodium symporters have been inconclusive. Here, we show that ligand binding to the Drosophila- and human dopamine transporters are inhibited by K+, and the conformational dynamics of the Drosophila dopamine transporter in K+ are divergent from the apo- and Na+-states. Furthermore, we find that K+ increases dopamine uptake by the Drosophila dopamine transporter in liposomes, and visualize Na+ and K+ fluxes in single proteoliposomes using fluorescent ion indicators. Our results expand on the fundamentals of dopamine transport and prompt a reevaluation of the impact of K+ on other transporters in this pharmacologically important family.

Suggested Citation

  • Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30154-5
    DOI: 10.1038/s41467-022-30154-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30154-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30154-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atsuko Yamashita & Satinder K. Singh & Toshimitsu Kawate & Yan Jin & Eric Gouaux, 2005. "Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters," Nature, Nature, vol. 437(7056), pages 215-223, September.
    2. Kevin H. Wang & Aravind Penmatsa & Eric Gouaux, 2015. "Neurotransmitter and psychostimulant recognition by the dopamine transporter," Nature, Nature, vol. 521(7552), pages 322-327, May.
    3. Ingvar R. Möller & Marika Slivacka & Anne Kathrine Nielsen & Søren G. F. Rasmussen & Ulrik Gether & Claus J. Loland & Kasper D. Rand, 2019. "Conformational dynamics of the human serotonin transporter during substrate and drug binding," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Harini Krishnamurthy & Eric Gouaux, 2012. "X-ray structures of LeuT in substrate-free outward-open and apo inward-open states," Nature, Nature, vol. 481(7382), pages 469-474, January.
    5. Anne Kathrine Nielsen & Ingvar R. Möller & Yong Wang & Søren G. F. Rasmussen & Kresten Lindorff-Larsen & Kasper D. Rand & Claus J. Loland, 2019. "Substrate-induced conformational dynamics of the dopamine transporter," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Rasmus P. Thomsen & Mette Galsgaard Malle & Anders Hauge Okholm & Swati Krishnan & Søren S.-R. Bohr & Rasmus Schøler Sørensen & Oliver Ries & Stefan Vogel & Friedrich C. Simmel & Nikos S. Hatzakis & J, 2019. "A large size-selective DNA nanopore with sensing applications," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Aravind Penmatsa & Kevin H. Wang & Eric Gouaux, 2013. "X-ray structure of dopamine transporter elucidates antidepressant mechanism," Nature, Nature, vol. 503(7474), pages 85-90, November.
    8. Jonathan A. Coleman & Dongxue Yang & Zhiyu Zhao & Po-Chao Wen & Craig Yoshioka & Emad Tajkhorshid & Eric Gouaux, 2019. "Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport," Nature, Nature, vol. 569(7754), pages 141-145, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    3. Talia Zeppelin & Lucy Kate Ladefoged & Steffen Sinning & Xavier Periole & Birgit Schiøtt, 2018. "A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-24, January.
    4. Huanyu Z. Li & Ashley C. W. Pike & Irina Lotsaris & Gamma Chi & Jesper S. Hansen & Sarah C. Lee & Karin E. J. Rödström & Simon R. Bushell & David Speedman & Adam Evans & Dong Wang & Didi He & Leela Sh, 2024. "Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ralph Gradisch & Katharina Schlögl & Erika Lazzarin & Marco Niello & Julian Maier & Felix P. Mayer & Leticia Alves da Silva & Sophie M. C. Skopec & Randy D. Blakely & Harald H. Sitte & Marko D. Mihovi, 2024. "Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Sarah B Robinson & Osama Refai & J Andrew Hardaway & Sarah Sturgeon & Tessa Popay & Daniel P Bermingham & Phyllis Freeman & Jane Wright & Randy D Blakely, 2019. "Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    7. Gabriel Núñez-Vivanco & Angélica Fierro & Pablo Moya & Patricio Iturriaga-Vásquez & Miguel Reyes-Parada, 2018. "3D similarities between the binding sites of monoaminergic target proteins," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    8. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xiaoming Liu & Fengyu Liu & Hemani Chhabra & Christopher Maffeo & Zhuo Chen & Qiang Huang & Aleksei Aksimentiev & Tatsuo Arai, 2024. "A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Eva Hellsberg & Gerhard F Ecker & Anna Stary-Weinzinger & Lucy R Forrest, 2019. "A structural model of the human serotonin transporter in an outward-occluded state," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-25, June.
    11. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Smrithi Krishnan R & Kalyanashis Jana & Amina H. Shaji & Karthika S. Nair & Anjali Devi Das & Devika Vikraman & Harsha Bajaj & Ulrich Kleinekathöfer & Kozhinjampara R. Mahendran, 2022. "Assembly of transmembrane pores from mirror-image peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Jie Sun & Xiaoran Roger Liu & Shuang Li & Peng He & Weikai Li & Michael L. Gross, 2021. "Nanoparticles and photochemistry for native-like transmembrane protein footprinting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30154-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.