IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002909.html
   My bibliography  Save this article

Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model

Author

Listed:
  • Thomas Stockner
  • Therese R Montgomery
  • Oliver Kudlacek
  • Rene Weissensteiner
  • Gerhard F Ecker
  • Michael Freissmuth
  • Harald H Sitte

Abstract

The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter‚s movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle. Author Summary: The dopamine transporter (DAT) regulates dopaminergic neurotransmission in the brain and is implicated in numerous human disease states. DAT is unique among the monoamine neurotransmitter transporter family because its substrate transport is inhibited by extracellular zinc. DAT homology models rely upon the crystal structure of LeuT solved in 2005. LeuT and DAT share a relatively low overall sequence identity of 22%. In addition, the length of the second extracellular loop of DAT exceeds that of LeuT by 21 residues. The zinc binding site cannot be directly modeled from the LeuT template alone because of these differences. Current available homology models of DAT focused on substrate or inhibitor binding rather than on the second extracellular loop. We exploited the specificity of the zinc binding site to build and calibrate a DAT homology model of the complete transmembrane domain. Our model predicted that the zinc binding site in DAT consists of four zinc co-ordinating residues rather than three that had been previously identified. We verified this hypothesis by site-directed mutagenesis and uptake inhibition studies.

Suggested Citation

  • Thomas Stockner & Therese R Montgomery & Oliver Kudlacek & Rene Weissensteiner & Gerhard F Ecker & Michael Freissmuth & Harald H Sitte, 2013. "Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-14, February.
  • Handle: RePEc:plo:pcbi00:1002909
    DOI: 10.1371/journal.pcbi.1002909
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002909
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002909&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atsuko Yamashita & Satinder K. Singh & Toshimitsu Kawate & Yan Jin & Eric Gouaux, 2005. "Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters," Nature, Nature, vol. 437(7056), pages 215-223, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariarosaria Ferraro & Matteo Masetti & Maurizio Recanatini & Andrea Cavalli & Giovanni Bottegoni, 2016. "Mapping Cholesterol Interaction Sites on Serotonin Transporter through Coarse-Grained Molecular Dynamics," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Thomas & Dylan Jayatilaka & Ben Corry, 2013. "An Entropic Mechanism of Generating Selective Ion Binding in Macromolecules," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    2. Saher Afshan Shaikh & Emad Tajkhorshid, 2010. "Modeling and Dynamics of the Inward-Facing State of a Na+/Cl− Dependent Neurotransmitter Transporter Homologue," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-14, August.
    3. Michael V LeVine & Harel Weinstein, 2014. "NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-15, May.
    4. Gabriel Núñez-Vivanco & Angélica Fierro & Pablo Moya & Patricio Iturriaga-Vásquez & Miguel Reyes-Parada, 2018. "3D similarities between the binding sites of monoaminergic target proteins," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    5. Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    6. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Mary Hongying Cheng & Ivet Bahar, 2014. "Complete Mapping of Substrate Translocation Highlights the Role of LeuT N-terminal Segment in Regulating Transport Cycle," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-15, October.
    8. Jufang Shan & Jonathan A Javitch & Lei Shi & Harel Weinstein, 2011. "The Substrate-Driven Transition to an Inward-Facing Conformation in the Functional Mechanism of the Dopamine Transporter," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-15, January.
    9. Mariarosaria Ferraro & Matteo Masetti & Maurizio Recanatini & Andrea Cavalli & Giovanni Bottegoni, 2016. "Mapping Cholesterol Interaction Sites on Serotonin Transporter through Coarse-Grained Molecular Dynamics," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-24, December.
    10. Heidi Koldsø & Pernille Noer & Julie Grouleff & Henriette Elisabeth Autzen & Steffen Sinning & Birgit Schiøtt, 2011. "Unbiased Simulations Reveal the Inward-Facing Conformation of the Human Serotonin Transporter and Na+ Ion Release," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.
    11. Weidong An & Yiwei Gao & Laihua Liu & Qinru Bai & Jun Zhao & Yan Zhao & Xuejun C. Zhang, 2025. "Structural basis of urea transport by Arabidopsis thaliana DUR3," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.