IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7754d10.1038_s41586-019-1135-1.html
   My bibliography  Save this article

Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport

Author

Listed:
  • Jonathan A. Coleman

    (Oregon Health & Science University)

  • Dongxue Yang

    (Oregon Health & Science University)

  • Zhiyu Zhao

    (University of Illinois at Urbana-Champaign)

  • Po-Chao Wen

    (University of Illinois at Urbana-Champaign)

  • Craig Yoshioka

    (Oregon Health & Science University)

  • Emad Tajkhorshid

    (University of Illinois at Urbana-Champaign)

  • Eric Gouaux

    (Oregon Health & Science University
    Oregon Health & Science University)

Abstract

The serotonin transporter (SERT) regulates neurotransmitter homeostasis through the sodium- and chloride-dependent recycling of serotonin into presynaptic neurons1–3. Major depression and anxiety disorders are treated using selective serotonin reuptake inhibitors—small molecules that competitively block substrate binding and thereby prolong neurotransmitter action2,4. The dopamine and noradrenaline transporters, together with SERT, are members of the neurotransmitter sodium symporter (NSS) family. The transport activities of NSSs can be inhibited or modulated by cocaine and amphetamines2,3, and genetic variants of NSSs are associated with several neuropsychiatric disorders including attention deficit hyperactivity disorder, autism and bipolar disorder2,5. Studies of bacterial NSS homologues—including LeuT—have shown how their transmembrane helices (TMs) undergo conformational changes during the transport cycle, exposing a central binding site to either side of the membrane1,6–12. However, the conformational changes associated with transport in NSSs remain unknown. To elucidate structure-based mechanisms for transport in SERT we investigated its complexes with ibogaine, a hallucinogenic natural product with psychoactive and anti-addictive properties13,14. Notably, ibogaine is a non-competitive inhibitor of transport but displays competitive binding towards selective serotonin reuptake inhibitors15,16. Here we report cryo-electron microscopy structures of SERT–ibogaine complexes captured in outward-open, occluded and inward-open conformations. Ibogaine binds to the central binding site, and closure of the extracellular gate largely involves movements of TMs 1b and 6a. Opening of the intracellular gate involves a hinge-like movement of TM1a and the partial unwinding of TM5, which together create a permeation pathway that enables substrate and ion diffusion to the cytoplasm. These structures define the structural rearrangements that occur from the outward-open to inward-open conformations, and provide insight into the mechanism of neurotransmitter transport and ibogaine inhibition.

Suggested Citation

  • Jonathan A. Coleman & Dongxue Yang & Zhiyu Zhao & Po-Chao Wen & Craig Yoshioka & Emad Tajkhorshid & Eric Gouaux, 2019. "Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport," Nature, Nature, vol. 569(7754), pages 141-145, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1135-1
    DOI: 10.1038/s41586-019-1135-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1135-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1135-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralph Gradisch & Katharina Schlögl & Erika Lazzarin & Marco Niello & Julian Maier & Felix P. Mayer & Leticia Alves da Silva & Sophie M. C. Skopec & Randy D. Blakely & Harald H. Sitte & Marko D. Mihovi, 2024. "Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1135-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.