IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09675-z.html
   My bibliography  Save this article

Conformational dynamics of the human serotonin transporter during substrate and drug binding

Author

Listed:
  • Ingvar R. Möller

    (University of Copenhagen
    University of Copenhagen)

  • Marika Slivacka

    (University of Copenhagen
    University of Copenhagen)

  • Anne Kathrine Nielsen

    (University of Copenhagen)

  • Søren G. F. Rasmussen

    (University of Copenhagen)

  • Ulrik Gether

    (University of Copenhagen)

  • Claus J. Loland

    (University of Copenhagen)

  • Kasper D. Rand

    (University of Copenhagen)

Abstract

The serotonin transporter (SERT), a member of the neurotransmitter:sodium symporter family, is responsible for termination of serotonergic signaling by re-uptake of serotonin (5-HT) into the presynaptic neuron. Its key role in synaptic transmission makes it a major drug target, e.g. for the treatment of depression, anxiety and post-traumatic stress. Here, we apply hydrogen-deuterium exchange mass spectrometry to probe the conformational dynamics of human SERT in the absence and presence of known substrates and targeted drugs. Our results reveal significant changes in dynamics in regions TM1, EL3, EL4, and TM12 upon binding co-transported ions (Na+/K+) and ligand-mediated changes in TM1, EL3 and EL4 upon binding 5-HT, the drugs S-citalopram, cocaine and ibogaine. Our results provide a comprehensive direct view of the conformational response of SERT upon binding both biologically relevant substrate/ions and ligands of pharmaceutical interest, thus advancing our understanding of the structure-function relationship in SERT.

Suggested Citation

  • Ingvar R. Möller & Marika Slivacka & Anne Kathrine Nielsen & Søren G. F. Rasmussen & Ulrik Gether & Claus J. Loland & Kasper D. Rand, 2019. "Conformational dynamics of the human serotonin transporter during substrate and drug binding," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09675-z
    DOI: 10.1038/s41467-019-09675-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09675-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09675-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Hellsberg & Gerhard F Ecker & Anna Stary-Weinzinger & Lucy R Forrest, 2019. "A structural model of the human serotonin transporter in an outward-occluded state," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-25, June.
    2. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09675-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.