IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0216417.html
   My bibliography  Save this article

Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1

Author

Listed:
  • Sarah B Robinson
  • Osama Refai
  • J Andrew Hardaway
  • Sarah Sturgeon
  • Tessa Popay
  • Daniel P Bermingham
  • Phyllis Freeman
  • Jane Wright
  • Randy D Blakely

Abstract

Dopamine (DA) is a neurotransmitter with actions across phylogeny that modulate core behaviors such as motor activity, reward, attention, and cognition. Perturbed DA signaling in humans is associated with multiple disorders, including addiction, ADHD, schizophrenia, and Parkinson’s disease. The presynaptic DA transporter exerts powerful control on DA signaling by efficient clearance of the neurotransmitter following release. As in vertebrates, Caenorhabditis elegans DAT (DAT-1) constrains DA signaling and loss of function mutations in the dat-1 gene result in slowed crawling on solid media and swimming-induced paralysis (Swip) in water. Previously, we identified a mutant line, vt34, that exhibits robust DA-dependent Swip. vt34 exhibits biochemical and behavioral phenotypes consistent with reduced DAT-1 function though vt34; dat-1 double mutants exhibit an enhanced Swip phenotype, suggesting contributions of the vt34-associated mutation to additional mechanisms that lead to excess DA signaling. SNP mapping and whole genome sequencing of vt34 identified the site of the molecular lesion in the gene B0412.2 that encodes the Runx transcription factor ortholog RNT-1. Unlike dat-1 animals, but similar to other loss of function rnt-1 mutants, vt34 exhibits altered male tail morphology and reduced body size. Deletion mutations in both rnt-1 and the bro-1 gene, which encodes a RNT-1 binding partner also exhibit Swip. Both vt34 and rnt-1 mutations exhibit reduced levels of dat-1 mRNA as well as the tyrosine hydroxylase ortholog cat-2. Although reporter studies indicate that rnt-1 is expressed in DA neurons, its re-expression in DA neurons of vt34 animals fails to fully rescue Swip. Moreover, as shown for vt34, rnt-1 mutation exhibits additivity with dat-1 in generating Swip, as do rnt-1 and bro-1 mutations, and vt34 exhibits altered capacity for acetylcholine signaling at the neuromuscular junction. Together, these findings identify a novel role for rnt-1 in limiting DA neurotransmission and suggest that loss of RNT-1 may disrupt function of both DA neurons and body wall muscle to drive Swip.

Suggested Citation

  • Sarah B Robinson & Osama Refai & J Andrew Hardaway & Sarah Sturgeon & Tessa Popay & Daniel P Bermingham & Phyllis Freeman & Jane Wright & Randy D Blakely, 2019. "Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0216417
    DOI: 10.1371/journal.pone.0216417
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216417
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0216417&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0216417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin H. Wang & Aravind Penmatsa & Eric Gouaux, 2015. "Neurotransmitter and psychostimulant recognition by the dopamine transporter," Nature, Nature, vol. 521(7552), pages 322-327, May.
    2. Aravind Penmatsa & Kevin H. Wang & Eric Gouaux, 2013. "X-ray structure of dopamine transporter elucidates antidepressant mechanism," Nature, Nature, vol. 503(7474), pages 85-90, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Talia Zeppelin & Lucy Kate Ladefoged & Steffen Sinning & Xavier Periole & Birgit Schiøtt, 2018. "A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-24, January.
    3. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Huanyu Z. Li & Ashley C. W. Pike & Irina Lotsaris & Gamma Chi & Jesper S. Hansen & Sarah C. Lee & Karin E. J. Rödström & Simon R. Bushell & David Speedman & Adam Evans & Dong Wang & Didi He & Leela Sh, 2024. "Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ralph Gradisch & Katharina Schlögl & Erika Lazzarin & Marco Niello & Julian Maier & Felix P. Mayer & Leticia Alves da Silva & Sophie M. C. Skopec & Randy D. Blakely & Harald H. Sitte & Marko D. Mihovi, 2024. "Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.