IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003879.html
   My bibliography  Save this article

Complete Mapping of Substrate Translocation Highlights the Role of LeuT N-terminal Segment in Regulating Transport Cycle

Author

Listed:
  • Mary Hongying Cheng
  • Ivet Bahar

Abstract

Neurotransmitter: sodium symporters (NSSs) regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT), a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded), and another, substrate-free, along the reverse transition (apo-occluded).Author Summary: Bacterial leucine transporter (LeuT) belongs to neurotransmitter:sodium symporter (NSS) family. Its human orthologs include dopamine transporter and serotonin transporter. Malfunction of NSS members has been implicated in neurological diseases, hence the significance of elucidating their mechanism of function as clinically relevant drug targets. NSSs co-transport substrates (neurotransmitters or amino acids) and sodium ions across the cell membrane via alternating access to extracellular and intracellular media, which enables the uptake of substrate and ions from the extracellular region and their release to the intracellular region. Despite significant progress in elucidating the structure and function of NSS family members, their mechanism of function and the role of their N-terminal segment exposed to the cell interior remain elusive. Here, we provide for the first time a full-atomic time-resolved description of the complete transport cycle of LeuT using multiscale simulations. Two major findings are (i) elucidation of the structure and dynamics of the N-terminal segment which helps in mediating substrate and cation release and resuming the transport cycle, and (ii) determination of the structures of two minimally hydrated intermediates occluded to both extracellular and intracellular environments.

Suggested Citation

  • Mary Hongying Cheng & Ivet Bahar, 2014. "Complete Mapping of Substrate Translocation Highlights the Role of LeuT N-terminal Segment in Regulating Transport Cycle," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-15, October.
  • Handle: RePEc:plo:pcbi00:1003879
    DOI: 10.1371/journal.pcbi.1003879
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003879
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003879&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.