IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v437y2005i7056d10.1038_nature03978.html
   My bibliography  Save this article

Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters

Author

Listed:
  • Atsuko Yamashita

    (Department of Biochemistry and Molecular Biophysics)

  • Satinder K. Singh

    (Department of Biochemistry and Molecular Biophysics)

  • Toshimitsu Kawate

    (Department of Biochemistry and Molecular Biophysics)

  • Yan Jin

    (Columbia University)

  • Eric Gouaux

    (Department of Biochemistry and Molecular Biophysics
    Columbia University)

Abstract

Na+/Cl--dependent transporters terminate synaptic transmission by using electrochemical gradients to drive the uptake of neurotransmitters, including the biogenic amines, from the synapse to the cytoplasm of neurons and glia. These transporters are the targets of therapeutic and illicit compounds, and their dysfunction has been implicated in multiple diseases of the nervous system. Here we present the crystal structure of a bacterial homologue of these transporters from Aquifex aeolicus, in complex with its substrate, leucine, and two sodium ions. The protein core consists of the first ten of twelve transmembrane segments, with segments 1–5 related to 6–10 by a pseudo-two-fold axis in the membrane plane. Leucine and the sodium ions are bound within the protein core, halfway across the membrane bilayer, in an occluded site devoid of water. The leucine and ion binding sites are defined by partially unwound transmembrane helices, with main-chain atoms and helix dipoles having key roles in substrate and ion binding. The structure reveals the architecture of this important class of transporter, illuminates the determinants of substrate binding and ion selectivity, and defines the external and internal gates.

Suggested Citation

  • Atsuko Yamashita & Satinder K. Singh & Toshimitsu Kawate & Yan Jin & Eric Gouaux, 2005. "Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters," Nature, Nature, vol. 437(7056), pages 215-223, September.
  • Handle: RePEc:nat:nature:v:437:y:2005:i:7056:d:10.1038_nature03978
    DOI: 10.1038/nature03978
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03978
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Núñez-Vivanco & Angélica Fierro & Pablo Moya & Patricio Iturriaga-Vásquez & Miguel Reyes-Parada, 2018. "3D similarities between the binding sites of monoaminergic target proteins," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    2. Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    3. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:437:y:2005:i:7056:d:10.1038_nature03978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.