IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26717-7.html
   My bibliography  Save this article

Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing

Author

Listed:
  • Sayan Chakraborty

    (Agency for Science, Technology, and Research (A*STAR))

  • Divyaleka Sampath

    (Agency for Science, Technology, and Research (A*STAR))

  • Melissa Ong Yu Lin

    (Agency for Science, Technology, and Research (A*STAR))

  • Matthew Bilton

    (National University of Singapore
    National University of Singapore)

  • Cheng-Kuang Huang

    (National University of Singapore
    National University of Singapore)

  • Mui Hoon Nai

    (National University of Singapore
    National University of Singapore)

  • Kizito Njah

    (Agency for Science, Technology, and Research (A*STAR))

  • Pierre-Alexis Goy

    (Agency for Science, Technology, and Research (A*STAR))

  • Cheng-Chun Wang

    (Agency for Science, Technology, and Research (A*STAR))

  • Ernesto Guccione

    (Agency for Science, Technology, and Research (A*STAR))

  • Chwee-Teck Lim

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Wanjin Hong

    (Agency for Science, Technology, and Research (A*STAR))

Abstract

An orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin’s mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.

Suggested Citation

  • Sayan Chakraborty & Divyaleka Sampath & Melissa Ong Yu Lin & Matthew Bilton & Cheng-Kuang Huang & Mui Hoon Nai & Kizito Njah & Pierre-Alexis Goy & Cheng-Chun Wang & Ernesto Guccione & Chwee-Teck Lim &, 2021. "Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26717-7
    DOI: 10.1038/s41467-021-26717-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26717-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26717-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mariaceleste Aragona & Sophie Dekoninck & Steffen Rulands & Sandrine Lenglez & Guilhem Mascré & Benjamin D. Simons & Cédric Blanpain, 2017. "Defining stem cell dynamics and migration during wound healing in mouse skin epidermis," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    2. Ellen A. Lumpkin & Michael J. Caterina, 2007. "Mechanisms of sensory transduction in the skin," Nature, Nature, vol. 445(7130), pages 858-865, February.
    3. Elad Bassat & Yara Eid Mutlak & Alex Genzelinakh & Ilya Y. Shadrin & Kfir Baruch Umansky & Oren Yifa & David Kain & Dana Rajchman & John Leach & Daria Riabov Bassat & Yael Udi & Rachel Sarig & Irit Sa, 2017. "The extracellular matrix protein agrin promotes heart regeneration in mice," Nature, Nature, vol. 547(7662), pages 179-184, July.
    4. Mateusz S. Wietecha & Marco Pensalfini & Michael Cangkrama & Bettina Müller & Juyoung Jin & Jürgen Brinckmann & Edoardo Mazza & Sabine Werner, 2020. "Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    5. Geoffrey C. Gurtner & Sabine Werner & Yann Barrandon & Michael T. Longaker, 2008. "Wound repair and regeneration," Nature, Nature, vol. 453(7193), pages 314-321, May.
    6. Sayan Chakraborty & Manikandan Lakshmanan & Hannah L.F. Swa & Jianxiang Chen & Xiaoqian Zhang & Yan Shan Ong & Li Shen Loo & Semih Can Akıncılar & Jayantha Gunaratne & Vinay Tergaonkar & Kam M. Hui & , 2015. "An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma," Nature Communications, Nature, vol. 6(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Feng & Shuyi Wang & Xiaoye Liu & Yiming Han & Hongwei Xu & Xiaocen Duan & Wenyue Xie & Zhuoling Tian & Zuoying Yuan & Zhuo Wan & Liang Xu & Siying Qin & Kangmin He & Jianyong Huang, 2023. "Geometric constraint-triggered collagen expression mediates bacterial-host adhesion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ing Chen & Chin-Chun Chang & Min-Fen Hsu & Yung-Ming Jeng & Yu-Wen Tien & Ming-Chu Chang & Yu-Ting Chang & Chun-Mei Hu & Wen-Hwa Lee, 2022. "Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Wenya Ma & Yanan Tian & Leping Shi & Jing Liang & Qimeng Ouyang & Jianglong Li & Hongyang Chen & Hongyue Sun & Haoyu Ji & Xu Liu & Wei Huang & Xinlu Gao & Xiaoyan Jin & Xiuxiu Wang & Yining Liu & Yang, 2024. "N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Li Yang & Dan Zhang & Wenjing Li & Hongbing Lin & Chendi Ding & Qingyun Liu & Liangliang Wang & Zimu Li & Lin Mei & Hongzhong Chen & Yanli Zhao & Xiaowei Zeng, 2023. "Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Duk Ki Kim & Juhee Jeong & Dong Sun Lee & Do Young Hyeon & Geon Woo Park & Suwan Jeon & Kyung Bun Lee & Jin-Young Jang & Daehee Hwang & Ho Min Kim & Keehoon Jung, 2022. "PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. María García-García & Sara Sánchez-Perales & Patricia Jarabo & Enrique Calvo & Trevor Huyton & Liran Fu & Sheung Chun Ng & Laura Sotodosos-Alonso & Jesús Vázquez & Sergio Casas-Tintó & Dirk Görlich & , 2022. "Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Du Wenqiang & Ashkan Novin & Yamin Liu & Junaid Afzal & Yasir Suhail & Shaofei Liu & Nicole R. Gavin & Jennifer R. Jorgensen & Christopher M. Morosky & Reinaldo Figueroa & Tannin A. Schmidt & Melinda , 2024. "Scar matrix drives Piezo1 mediated stromal inflammation leading to placenta accreta spectrum," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Shiri Kuperman & Ram Efraty & Ina Arie & Arkadi Rahmanov & Marina Rahmanov Gavrielov & Matityahau Noff & Ron Fishel & Sandu Pitaru, 2020. "Examination of the Therapeutic Potential of Mouse Oral Mucosa Stem Cells in a Wound-Healing Diabetic Mice Model," IJERPH, MDPI, vol. 17(13), pages 1-10, July.
    9. Daniel Jun-Kit Hu & Jina Yun & Justin Elstrott & Heinrich Jasper, 2021. "Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Shiman Zuo & Yuxin Wang & Hanjing Bao & Zehui Zhang & Nanfei Yang & Meng Jia & Qing Zhang & Ani Jian & Rong Ji & Lidan Zhang & Yan Lu & Yahong Huang & Pingping Shen, 2024. "Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Chantal A. Ten Kate & Hilde J. H. Koese & M. Jenda Hop & André B. Rietman & René M. H. Wijnen & Marijn J. Vermeulen & Claudia M. G. Keyzer-Dekker, 2023. "Psychometric Performance of the Stony Brook Scar Evaluation Scale and SCAR-Q Questionnaire in Dutch Children after Pediatric Surgery," IJERPH, MDPI, vol. 21(1), pages 1-12, December.
    12. Ishier Raote & Ann-Helen Rosendahl & Hanna-Maria Häkkinen & Carina Vibe & Ismail Küçükaylak & Mugdha Sawant & Lena Keufgens & Pia Frommelt & Kai Halwas & Katrina Broadbent & Marina Cunquero & Gustavo , 2024. "TANGO1 inhibitors reduce collagen secretion and limit tissue scarring," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Laura Yerly & Christine Pich-Bavastro & Jeremy Domizio & Tania Wyss & Stéphanie Tissot-Renaud & Michael Cangkrama & Michel Gilliet & Sabine Werner & François Kuonen, 2022. "Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Diana Boraschi & Dongjie Li & Yang Li & Paola Italiani, 2021. "In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
    15. Carmen Sena-Tomás & Angelika G. Aleman & Caitlin Ford & Akriti Varshney & Di Yao & Jamie K. Harrington & Leonor Saúde & Mirana Ramialison & Kimara L. Targoff, 2022. "Activation of Nkx2.5 transcriptional program is required for adult myocardial repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Karen L. Xu & Nikolas Caprio & Hooman Fallahi & Mohammad Dehghany & Matthew D. Davidson & Lorielle Laforest & Brian C. H. Cheung & Yuqi Zhang & Mingming Wu & Vivek Shenoy & Lin Han & Robert L. Mauck &, 2024. "Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Liansheng Liu & Hua Yang & Runze Duan & Minghai Liu & Ruifang Zhang & Yiji Ding & Hongzhen Sun, 2018. "Effect of Non-Coal Heating and Traditional Heating on Indoor Environment of Rural Houses in Tianjin," IJERPH, MDPI, vol. 16(1), pages 1-10, December.
    18. Yonger Xue & Yuebao Zhang & Yichen Zhong & Shi Du & Xucheng Hou & Wenqing Li & Haoyuan Li & Siyu Wang & Chang Wang & Jingyue Yan & Diana D. Kang & Binbin Deng & David W. McComb & Darrell J. Irvine & R, 2024. "LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Slobodan Vukicevic & Andrea Colliva & Vera Kufner & Valentina Martinelli & Silvia Moimas & Simone Vodret & Viktorija Rumenovic & Milan Milosevic & Boris Brkljacic & Diana Delic-Brkljacic & Ricardo Cor, 2022. "Bone morphogenetic protein 1.3 inhibition decreases scar formation and supports cardiomyocyte survival after myocardial infarction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Florian J. Bock & Egor Sedov & Elle Koren & Anna L. Koessinger & Catherine Cloix & Désirée Zerbst & Dimitris Athineos & Jayanthi Anand & Kirsteen J. Campbell & Karen Blyth & Yaron Fuchs & Stephen W. G, 2021. "Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26717-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.