IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14684.html
   My bibliography  Save this article

Defining stem cell dynamics and migration during wound healing in mouse skin epidermis

Author

Listed:
  • Mariaceleste Aragona

    (Université Libre de Bruxelles, IRIBHM)

  • Sophie Dekoninck

    (Université Libre de Bruxelles, IRIBHM)

  • Steffen Rulands

    (Cavendish Laboratory, University of Cambridge)

  • Sandrine Lenglez

    (Université Libre de Bruxelles, IRIBHM)

  • Guilhem Mascré

    (Université Libre de Bruxelles, IRIBHM)

  • Benjamin D. Simons

    (Cavendish Laboratory, University of Cambridge
    The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge
    Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge)

  • Cédric Blanpain

    (Université Libre de Bruxelles, IRIBHM
    WELBIO, Université Libre de Bruxelles)

Abstract

Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders.

Suggested Citation

  • Mariaceleste Aragona & Sophie Dekoninck & Steffen Rulands & Sandrine Lenglez & Guilhem Mascré & Benjamin D. Simons & Cédric Blanpain, 2017. "Defining stem cell dynamics and migration during wound healing in mouse skin epidermis," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14684
    DOI: 10.1038/ncomms14684
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14684
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian J. Bock & Egor Sedov & Elle Koren & Anna L. Koessinger & Catherine Cloix & Désirée Zerbst & Dimitris Athineos & Jayanthi Anand & Kirsteen J. Campbell & Karen Blyth & Yaron Fuchs & Stephen W. G, 2021. "Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Sayan Chakraborty & Divyaleka Sampath & Melissa Ong Yu Lin & Matthew Bilton & Cheng-Kuang Huang & Mui Hoon Nai & Kizito Njah & Pierre-Alexis Goy & Cheng-Chun Wang & Ernesto Guccione & Chwee-Teck Lim &, 2021. "Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Daniel Jun-Kit Hu & Jina Yun & Justin Elstrott & Heinrich Jasper, 2021. "Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Karen L. Xu & Nikolas Caprio & Hooman Fallahi & Mohammad Dehghany & Matthew D. Davidson & Lorielle Laforest & Brian C. H. Cheung & Yuqi Zhang & Mingming Wu & Vivek Shenoy & Lin Han & Robert L. Mauck &, 2024. "Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.