IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16409-z.html
   My bibliography  Save this article

Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds

Author

Listed:
  • Mateusz S. Wietecha

    (ETH Zurich)

  • Marco Pensalfini

    (ETH Zurich)

  • Michael Cangkrama

    (ETH Zurich)

  • Bettina Müller

    (ETH Zurich)

  • Juyoung Jin

    (ETH Zurich)

  • Jürgen Brinckmann

    (University of Lübeck
    University of Lübeck)

  • Edoardo Mazza

    (ETH Zurich
    Swiss Federal Laboratories for Materials Science and Technology)

  • Sabine Werner

    (ETH Zurich)

Abstract

Matrix deposition is essential for wound repair, but when excessive, leads to hypertrophic scars and fibrosis. The factors that control matrix deposition in skin wounds have only partially been identified and the consequences of matrix alterations for the mechanical properties of wounds are largely unknown. Here, we report how a single diffusible factor, activin A, affects the healing process across scales. Bioinformatics analysis of wound fibroblast transcriptome data combined with biochemical and histopathological analyses of wounds and functional in vitro studies identify that activin promotes pro-fibrotic gene expression signatures and processes, including glycoprotein and proteoglycan biosynthesis, collagen deposition, and altered collagen cross-linking. As a consequence, activin strongly reduces the wound and scar deformability, as identified by a non-invasive in vivo method for biomechanical analysis. These results provide mechanistic insight into the roles of activin in wound repair and fibrosis and identify the functional consequences of alterations in the wound matrisome at the biomechanical level.

Suggested Citation

  • Mateusz S. Wietecha & Marco Pensalfini & Michael Cangkrama & Bettina Müller & Juyoung Jin & Jürgen Brinckmann & Edoardo Mazza & Sabine Werner, 2020. "Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16409-z
    DOI: 10.1038/s41467-020-16409-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16409-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16409-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duk Ki Kim & Juhee Jeong & Dong Sun Lee & Do Young Hyeon & Geon Woo Park & Suwan Jeon & Kyung Bun Lee & Jin-Young Jang & Daehee Hwang & Ho Min Kim & Keehoon Jung, 2022. "PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Laura Yerly & Christine Pich-Bavastro & Jeremy Domizio & Tania Wyss & Stéphanie Tissot-Renaud & Michael Cangkrama & Michel Gilliet & Sabine Werner & François Kuonen, 2022. "Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Sayan Chakraborty & Divyaleka Sampath & Melissa Ong Yu Lin & Matthew Bilton & Cheng-Kuang Huang & Mui Hoon Nai & Kizito Njah & Pierre-Alexis Goy & Cheng-Chun Wang & Ernesto Guccione & Chwee-Teck Lim &, 2021. "Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Yi-Ing Chen & Chin-Chun Chang & Min-Fen Hsu & Yung-Ming Jeng & Yu-Wen Tien & Ming-Chu Chang & Yu-Ting Chang & Chun-Mei Hu & Wen-Hwa Lee, 2022. "Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16409-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.