IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v55y2013i1p1-19.html
   My bibliography  Save this article

Biofuels and Climate Change Mitigation: A CGE Analysis Incorporating Land-Use Change

Author

Listed:
  • Govinda Timilsina
  • Simon Mevel

Abstract

The question of whether or not biofuels help mitigate climate change has attracted much debate in the literature. Using a global computable general equilibrium model that explicitly represents land-use change impacts due to the expansion of biofuels, our study attempts to shed some light on this question. Our study shows that if biofuel mandates and targets currently announced by more than 40 countries around the world are implemented by 2020 using crop feedstocks and if both forests and pasture lands are used to meet the new land demands for biofuel expansion, this would cause net release of GHG emissions to the atmosphere until 2043 as the GHG emissions released through land-use change exceeds the reduction of emissions due to replacement of gasoline and diesel. On the other hand, if the use of forest lands is avoided by channeling only pasture lands to meet the demand for new lands, the net release of GHG emissions would cease by 2021, a year after the full implementation of the mandates and targets. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Govinda Timilsina & Simon Mevel, 2013. "Biofuels and Climate Change Mitigation: A CGE Analysis Incorporating Land-Use Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 1-19, May.
  • Handle: RePEc:kap:enreec:v:55:y:2013:i:1:p:1-19
    DOI: 10.1007/s10640-012-9609-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-012-9609-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-012-9609-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, Huey-Lin & Hertel, Thomas & Rose, Steven & Avetisyan, Misak, 2008. "An Integrated Global Land Use Data Base for CGE Analysis of Climate Policy Options," GTAP Working Papers 2603, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    2. Y. Surry, 1993. "The Constant Difference Of Elasticities Function With Applications To The Ec Animal Feed Sector," Journal of Agricultural Economics, Wiley Blackwell, vol. 44(1), pages 110-125, January.
    3. Govinda R. Timilsina & John C. Beghin & Dominique van der Mensbrugghe & Simon Mevel, 2012. "The impacts of biofuels targets on land‐use change and food supply: A global CGE assessment," Agricultural Economics, International Association of Agricultural Economists, vol. 43(3), pages 315-332, May.
    4. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    5. World Bank, 2009. "Global Economic Prospects 2009 : Commodities at the Crossroads," World Bank Publications - Books, The World Bank Group, number 2581.
    6. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Timilsina, Govinda R. & Shrestha, Ashish, 2010. "Biofuels : markets, targets and impacts," Policy Research Working Paper Series 5364, The World Bank.
    9. Goldemberg, José & Coelho, Suani Teixeira & Guardabassi, Patricia, 2008. "The sustainability of ethanol production from sugarcane," Energy Policy, Elsevier, vol. 36(6), pages 2086-2097, June.
    10. Huang, Hsin & van Tongeren, Frank & Dewbre, Joe Dewbre, Joe & van Meijl, Hans, 2004. "A New Representation of Agricultural Production Technology in GTAP," Conference papers 330233, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Yves Surry, 1993. "The constant difference of elasticities function with applications to the EC animal feed sector," Post-Print hal-01600456, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    2. Ronald D. Sands & Katja Schumacher & Hannah Forster, 2014. "U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use," The Energy Journal, , vol. 35(1_suppl), pages 181-198, June.
    3. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    4. Pogany, Peter, 2013. "Thermodynamic Isolation and the New World Order," MPRA Paper 49924, University Library of Munich, Germany.
    5. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    6. Ronald D. Sands, Katja Schumacher, and Hannah Forster, 2014. "U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Marcus Keogh-Brown & Henning Tarp Jensen & Bhavani Shankar & Sanjay Basu & Soledad Cuevas & Alan Dangour & Shabbir H. Gheewala & Rosemary Green & Edward Joy & Nalitra Thaiprasert & Richard Smith, 2017. "An integrated macroeconomic, demographic and health modelling framework for palm oil policies in Thailand," EcoMod2017 10569, EcoMod.
    8. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    9. Mochizuki, Junko & Coffman, Makena & Yanagida, John F., 2015. "Market, welfare and land-use implications of lignocellulosic bioethanol in Hawai'i," Renewable Energy, Elsevier, vol. 76(C), pages 102-114.
    10. Cabalu, Helen & Koshy, Paul & Corong, Erwin & Rodriguez, U-Primo E. & Endriga, Benjamin A., 2015. "Modelling the impact of energy policies on the Philippine economy: Carbon tax, energy efficiency, and changes in the energy mix," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 222-237.
    11. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2023. "Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 99-123, January.
    12. Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Carbon, climate, and economic breakeven times for biofuel from woody biomass from managed forests," Ecological Economics, Elsevier, vol. 112(C), pages 45-52.
    13. Junko Mochizuki & John F. Yanagida & Makena Coffman, 2013. "Market, Welfare and Land-Use Implications of Lignocellulosic Bioethanol in Hawai�i," Working Papers 2013-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. Marquez, Gian Powell B. & Santiañez, Wilfred John E. & Trono, Gavino C. & Montaño, Marco Nemesio E. & Araki, Hiroshi & Takeuchi, Hisae & Hasegawa, Tatsuya, 2014. "Seaweed biomass of the Philippines: Sustainable feedstock for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1056-1068.
    15. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    16. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.
    2. Timilsina, Govinda R. & Mevel, Simon & Shrestha, Ashish, 2011. "Oil price, biofuels and food supply," Energy Policy, Elsevier, vol. 39(12), pages 8098-8105.
    3. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.
    4. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    5. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    6. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    7. Bouët, Antoine & Dimaranan, Betina V. & Valin, Hugo, 2010. "Modeling the global trade and environmental impacts of biofuel policies," IFPRI discussion papers 1018, International Food Policy Research Institute (IFPRI).
    8. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    9. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    10. Virginie Doumax & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, tax policies and oil price: insights from a dynamic CGE model," EcoMod2013 5417, EcoMod.
    11. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
    12. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    13. Krissana Treesilvattanakul & Farzad Taheripour & Wallace E. Tyner, 2014. "Application of US and EU Sustainability Criteria to Analysis of Biofuels-Induced Land Use Change," Energies, MDPI, vol. 7(8), pages 1-10, August.
    14. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Biofuels and the poor: Global impact pathways of biofuels on agricultural markets," Food Policy, Elsevier, vol. 37(4), pages 439-451.
    15. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    16. Tabeau, Andrzej & van Meijl, Hans & Overmars, Koen P. & Stehfest, Elke, 2017. "REDD policy impacts on the agri-food sector and food security," Food Policy, Elsevier, vol. 66(C), pages 73-87.
    17. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    19. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    20. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:55:y:2013:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.