IDEAS home Printed from https://ideas.repec.org/a/taf/regstd/v49y2015i4p615-643.html
   My bibliography  Save this article

The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications

Author

Listed:
  • Grant J. Allan

Abstract

Allan G. J. The regional economic impacts of biofuels: a review of multisectoral modelling techniques and evaluation of applications, Regional Studies . The regional economic impact of biofuel production depends upon a number of interrelated factors: the specific biofuels feedstock and production technology employed; the sector's embeddedness in the rest of the economy, through its demand for local resources; and the extent to which new activity is created. These issues can be analysed using multisectoral economic models. Some studies use input-output (IO) and social accounting matrix (SAM) modelling frameworks, whilst a nascent computable general equilibrium (CGE) literature has begun to examine the regional impact of biofuel development. This paper reviews, compares and evaluates these approaches for modelling the regional economic impacts of biofuels.

Suggested Citation

  • Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
  • Handle: RePEc:taf:regstd:v:49:y:2015:i:4:p:615-643
    DOI: 10.1080/00343404.2013.799761
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00343404.2013.799761
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00343404.2013.799761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Reilly, John & Paltsev, Sergey, 2007. "Biomass Energy and Competition for Land," Conference papers 331570, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Lewis, Blane D. & Thorbecke, Erik, 1992. "District-level economic linkages in Kenya: Evidence based on a small regional social accounting matrix," World Development, Elsevier, vol. 20(6), pages 881-897, June.
    3. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    4. Yang, Jun & Huang, Jikun & Qiu, Huanguang & Rozelle, Scott & Sombilla, Mercy A., 2009. "Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade," Applied Energy, Elsevier, vol. 86(Supplemen), pages 37-46, November.
    5. Reilly, John & Paltsev, Sergey, 2008. "Biomass Energy and Competition for Land," GTAP Working Papers 2607, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    7. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    8. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Mark Partridge & Dan Rickman, 2010. "Computable General Equilibrium (CGE) Modelling for Regional Economic Development Analysis," Regional Studies, Taylor & Francis Journals, vol. 44(10), pages 1311-1328.
    10. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    13. Mark D. Partridge & Dan S. Rickman, 1998. "Regional Computable General Equilibrium Modeling: A Survey and Critical Appraisal," International Regional Science Review, , vol. 21(3), pages 205-248, December.
    14. Taheripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E. & Beckman, Jayson F. & Birur, Dileep K., 2008. "Biofuels and their By-Products: Global Economic and Environmental Implications," Conference papers 331685, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Marcelo Pereira Da Cunha & Jose Antonio Scaramucci, 2006. "Bioethanol As Basis for Regional Development in Brazil: An Input-Output Model With Mixed Technologies," ERSA conference papers ersa06p242, European Regional Science Association.
    16. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    17. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    18. Lee, Huey-Lin & Thomas Hertel & Brent Sohngen & Navin Ramankutty, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    19. Trink, Thomas & Schmid, Christoph & Schinko, Thomas & Steininger, Karl W. & Loibnegger, Thomas & Kettner, Claudia & Pack, Alexandra & Töglhofer, Christoph, 2010. "Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria," Energy Policy, Elsevier, vol. 38(10), pages 5912-5926, October.
    20. James A. Giesecke & J. Mark Horridge & Jose A. Scaramucci, 2007. "The Downside of Domestic Substitution of Oil with Biofuels: Will Brazil Catch the Dutch Disease?," Centre of Policy Studies/IMPACT Centre Working Papers g-169, Victoria University, Centre of Policy Studies/IMPACT Centre.
    21. Eliecer E. Vargas & Dean F. Schreiner & Gelson Tembo & David W. Marcouiller, 1999. "Computable General Equilibrium Modeling for Regional Analysis," Wholbk, Regional Research Institute, West Virginia University, number 18, Fall.
    22. Kulisic, Biljana & Loizou, Efstratios & Rozakis, Stelios & Segon, Velimir, 2007. "Impacts of biodiesel production on Croatian economy," Energy Policy, Elsevier, vol. 35(12), pages 6036-6045, December.
    23. Arndt, Channing & Benfica, Rui & Tarp, Finn & Thurlow, James & Uaiene, Rafael, 2010. "Biofuels, poverty, and growth: a computable general equilibrium analysis of Mozambique," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 81-105, February.
    24. Swenson, David A. & Eathington, Liesl, 2006. "Determining the Regional Economic Values of Ethanol Production in Iowa Considering Different Levels of Local Investment," Staff General Research Papers Archive 12687, Iowa State University, Department of Economics.
    25. McKitrick, Ross R., 1998. "The econometric critique of computable general equilibrium modeling: the role of functional forms," Economic Modelling, Elsevier, vol. 15(4), pages 543-573, October.
    26. repec:rre:publsh:v:40:y:2010:i:2:p:135-43 is not listed on IDEAS
    27. Mitchell, Donald, 2008. "A note on rising food prices," Policy Research Working Paper Series 4682, The World Bank.
    28. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    29. Scott Loveridge, 2004. "A Typology and Assessment of Multi-sector Regional Economic Impact Models," Regional Studies, Taylor & Francis Journals, vol. 38(3), pages 305-317.
    30. Swenson, David A., 2007. "Understanding Biofuels Economic Impact Claims," Staff General Research Papers Archive 12790, Iowa State University, Department of Economics.
    31. Taheripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E., 2009. "Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49330, Agricultural and Applied Economics Association.
    32. Reilly, John M. & Gurgel, Angelo Costa & Paltsev, Sergey, 2008. "Biofuels and Land Use Change," Environmental and Rural Development Impacts Conference, October 15-16, 2008, St. Louis, Missouri 53490, Farm Foundation, Transition to a Bio Economy Conferences.
    33. Scaramucci, Jose A. & Perin, Clovis & Pulino, Petronio & Bordoni, Orlando F.J.G. & da Cunha, Marcelo P. & Cortez, Luis A.B., 2006. "Energy from sugarcane bagasse under electricity rationing in Brazil: a computable general equilibrium model," Energy Policy, Elsevier, vol. 34(9), pages 986-992, June.
    34. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    35. Parikh, Alka & Thorbecke, Erik, 1996. "Impact of Rural Industrialization on Village Life and Economy: A Social Accounting Matrix Approach," Economic Development and Cultural Change, University of Chicago Press, vol. 44(2), pages 351-377, January.
    36. Peter B. Dixon & Stefan Osborne & Maureen T. Rimmer, 2007. "The Economy-Wide Effects in the United States of Replacing Crude Petroleum with Biomass," Energy & Environment, , vol. 18(6), pages 709-722, November.
    37. Thomas W. Hertel & Marinos E. Tsigas, 1988. "Tax Policy and U.S. Agriculture: A General Equilibrium Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(2), pages 289-302.
    38. Mark Gehlhar & Agapi Somwaru & Peter B. Dixon & Maureen T. Rimmer & Ashley R. Winston, 2010. "Economywide Implications from US Bioenergy Expansion," American Economic Review, American Economic Association, vol. 100(2), pages 172-177, May.
    39. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
    40. Paul J. Thomassin & Laurie Baker, 2000. "Macroeconomic Impact of Establishing a Large-scale Fuel Ethanol Plant on the Canadian Economy," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 48(1), pages 67-85, March.
    41. Kretschmer, Bettina & Peterson, Sonja & Ignaciuk, Adriana M., 2008. "Integrating biofuels into the DART model," Kiel Working Papers 1472, Kiel Institute for the World Economy (IfW Kiel).
    42. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim, 2013. "Forward-looking and myopic regional Computable General Equilibrium models: How significant is the distinction?," Economic Modelling, Elsevier, vol. 31(C), pages 160-176.
    43. Wianwiwat, S. & Asafu-Adjaye, J., 2011. "Modelling the promotion of biomass use: A case study of Thailand," Energy, Elsevier, vol. 36(3), pages 1735-1748.
    44. Blanchflower, David G & Oswald, Andrew J, 1994. "Estimating a Wage Curve for Britain: 1973-90," Economic Journal, Royal Economic Society, vol. 104(426), pages 1025-1043, September.
    45. repec:rre:publsh:v:34:y:2004:i:1:p:57-71 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herreras Martínez, Sara & van Eijck, Janske & Pereira da Cunha, Marcelo & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, Andre, 2013. "Analysis of socio-economic impacts of sustainable sugarcane–ethanol production by means of inter-regional Input–Output analysis: Demonstrated for Northeast Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 290-316.
    2. Randall Jackson & Amir B. Ferreira Neto & Elham Erfanian, 2016. "Woody Biomass Processing: Potential Economic Impacts on Rural Regions," Working Papers Working Paper 2016-04-v3, Regional Research Institute, West Virginia University.
    3. Zanxin Wang & Wei Wei & Margaret Calderon & Xianchun Liao, 2019. "Impacts of biofuel policy on the regional economy and carbon emission reduction in Yunnan, China," Energy & Environment, , vol. 30(5), pages 930-948, August.
    4. Randall W. Jackson & Amir Borges Ferreira Neto & Elham Erfanian & Péter Járosi, 2019. "Woody Biomass Processing and Rural Regional Development," Economic Development Quarterly, , vol. 33(3), pages 234-247, August.
    5. Goyal, Srishti & Llop, Maria, 2024. "The shipping industry under the EU Green Deal: An Input-Output impact analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    6. Sievers, Luisa & Schaffer, Axel, 2016. "The impacts of the German biofuel quota on sectoral domestic production and imports of the German economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 497-505.
    7. Philip B. Whyman, 2018. "The local economic impact of shale gas extraction," Regional Studies, Taylor & Francis Journals, vol. 52(2), pages 184-196, February.
    8. Zhao, Bing & Wang, Nuo & Wang, Yixuan, 2022. "The role of different transportation modes in China's national economy: An input–output analysis," Transport Policy, Elsevier, vol. 127(C), pages 92-102.
    9. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Faße, Anja & Winter, Etti & Grote, Ulrike, 2014. "Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy," Ecological Economics, Elsevier, vol. 106(C), pages 155-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    2. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    3. Wianwiwat, Suthin & Asafu-Adjaye, John, 2013. "Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand," Energy Policy, Elsevier, vol. 55(C), pages 543-555.
    4. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    5. Elizondo, Alejandra & Boyd, Roy, 2017. "Economic impact of ethanol promotion in Mexico: A general equilibrium analysis," Energy Policy, Elsevier, vol. 101(C), pages 293-301.
    6. Banse, M. & Sorda, G., 2010. "Impact of Different Biofuel Policy Options on Agricultural Production and Land Use in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    7. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    8. Kolasa, Marcin, 2014. "Real convergence and its illusions," Economic Modelling, Elsevier, vol. 37(C), pages 79-88.
    9. Castiblanco, Carmenza & Moreno, Alvaro & Etter, Andrés, 2015. "Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia," Energy Economics, Elsevier, vol. 49(C), pages 676-686.
    10. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    11. Sievers, Luisa & Schaffer, Axel, 2016. "The impacts of the German biofuel quota on sectoral domestic production and imports of the German economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 497-505.
    12. Zhang, Wei & Yu, Elaine A. & Rozelle, Scott & Yang, Jun & Msangi, Siwa, 2013. "The impact of biofuel growth on agriculture: Why is the range of estimates so wide?," Food Policy, Elsevier, vol. 38(C), pages 227-239.
    13. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    14. Sukati, Mphumuzi, 2014. "The South African Bio ethanol blend mandate and its implications on regional agricultural markets and welfare," MPRA Paper 57702, University Library of Munich, Germany.
    15. Randall W. Jackson & Amir Borges Ferreira Neto & Elham Erfanian & Péter Járosi, 2019. "Woody Biomass Processing and Rural Regional Development," Economic Development Quarterly, , vol. 33(3), pages 234-247, August.
    16. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    17. Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
    18. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Biofuels and the poor: Global impact pathways of biofuels on agricultural markets," Food Policy, Elsevier, vol. 37(4), pages 439-451.
    19. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    20. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.

    More about this item

    JEL classification:

    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • R13 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General Equilibrium and Welfare Economic Analysis of Regional Economies
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:regstd:v:49:y:2015:i:4:p:615-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CRES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.