IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp246-255.html
   My bibliography  Save this article

Global biofuel production and poverty in China

Author

Listed:
  • Huang, Jikun
  • Yang, Jun
  • Msangi, Siwa
  • Rozelle, Scott
  • Weersink, Alfons

Abstract

This study assesses the future impacts of biofuel production from the world’s major biofuel producers (the US, Brazil and the EU) over the next decade on global markets and the resulting spatial implications on income distribution and agricultural production in China. Rising global commodity prices arising from either positive market conditions for biofuels or government mandates on biofuel production levels, are transmitted, albeit imperfectly, into China’s domestic food economy. For those crops that are being used for feedstocks internationally (maize) or are close substitutes for feedstocks (soybeans), production rises sharply. Imports also fall significantly. Such dynamics help China to realize its self-sufficiency goals more fully. Another unintended benefit of the increase in global biofuel use is the impact on Chinese income distribution. China’s farmers—especially the poor—benefit from biofuels.

Suggested Citation

  • Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:246-255
    DOI: 10.1016/j.apenergy.2012.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas W. Hertel & Jayson Beckman, 2011. "Commodity Price Volatility in the Biofuel Era: An Examination of the Linkage between Energy and Agricultural Markets," NBER Chapters, in: The Intended and Unintended Effects of US Agricultural and Biotechnology Policies, pages 189-221, National Bureau of Economic Research, Inc.
    2. Malik, Urooj S. & Ahmed, Mahfuz & Sombilla, Mercedita A. & Cueno, Sarah L., 2009. "Biofuels production for smallholder producers in the Greater Mekong Sub-region," Applied Energy, Elsevier, vol. 86(Supplemen), pages 58-68, November.
    3. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    4. Qiu, Huanguang & Huang, Jikun & Yang, Jun & Rozelle, Scott & Zhang, Yuhua & Zhang, Yahui & Zhang, Yanli, 2010. "Bioethanol development in China and the potential impacts on its agricultural economy," Applied Energy, Elsevier, vol. 87(1), pages 76-83, January.
    5. Elobeid Amani & Hart Chad, 2007. "Ethanol Expansion in the Food versus Fuel Debate: How Will Developing Countries Fare?," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-23, December.
    6. Anderson, Kym & Huang, Jikun & Ianchovichina, Elena, 2004. "Will China's WTO accession worsen farm household incomes?," China Economic Review, Elsevier, vol. 15(4), pages 443-456.
    7. Huang, Jikun & Jun, Yang & Xu, Zhigang & Rozelle, Scott & Li, Ninghui, 2007. "Agricultural trade liberalization and poverty in China," China Economic Review, Elsevier, vol. 18(3), pages 244-265.
    8. Agoramoorthy, Govindasamy & Hsu, Minna J. & Chaudhary, Sunita & Shieh, Po-Chuen, 2009. "Can biofuel crops alleviate tribal poverty in India's drylands?," Applied Energy, Elsevier, vol. 86(Supplemen), pages 118-124, November.
    9. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    10. Yang, Jun & Huang, Jikun & Qiu, Huanguang & Rozelle, Scott & Sombilla, Mercy A., 2009. "Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade," Applied Energy, Elsevier, vol. 86(Supplemen), pages 37-46, November.
    11. Timilsina, Govinda R. & Shrestha, Ashish, 2010. "Biofuels : markets, targets and impacts," Policy Research Working Paper Series 5364, The World Bank.
    12. Mark W. Rosegrant & Tingju Zhu & Siwa Msangi & Timothy Sulser, 2008. "Global Scenarios for Biofuels: Impacts and Implications," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 495-505.
    13. Hayes, Dermot J. & Babcock, Bruce A. & Fabiosa, Jacinto F. & Tokgoz, Simla & Elobeid, Amani E. & Yu, Tun-Hsiang (Edward) & Dong, Fengxia & Hart, Chad E. & Chavez, Eddie C. & Pan, Suwen & Carriquiry, M, 2009. "Biofuels: Potential Production Capacity, Effects on Grain and Livestock Sectors, and Implications for Food Prices and Consumers," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 41(2), April.
    14. Alison Burrell & Maria Blanco & Stephan Hubertus Gay & Martin Henseler & Aikaterini Kavallari & Robert M'barek & Ignacio Perez & Axel Tonini, 2010. "Impacts of the EU Biofuel Target on Agricultural Markets and Land Use - A Comparative Modelling Assessment," JRC Research Reports JRC58484, Joint Research Centre.
    15. Khan, Azizur Rahman & Riskin, Carl, 2001. "Inequality and Poverty in China in the Age of Globalization," OUP Catalogue, Oxford University Press, number 9780195136494.
    16. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    17. Rafael E. de Hoyos & Denis Medvedev, 2011. "Poverty Effects of Higher Food Prices: A Global Perspective," Review of Development Economics, Wiley Blackwell, vol. 15(3), pages 387-402, August.
    18. Thomas W. Hertel & Wallace E. Tyner & Dileep K. Birur, 2010. "The Global Impacts of Biofuel Mandates," The Energy Journal, , vol. 31(1), pages 75-100, January.
    19. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    20. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    21. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    22. Paarlberg, Robert, 2010. "Food Politics: What Everyone Needs to Know," OUP Catalogue, Oxford University Press, number 9780195389593.
    23. Daniel H. Rosen & Scott Rozelle & Jikan Huang, 2004. "Roots of Competitiveness: China's Evolving Agriculture Interests," Peterson Institute Press: All Books, Peterson Institute for International Economics, number pa72, April.
    24. Will Martin & Kym Anderson, 2006. "The Doha Agenda Negotiations on Agriculture: What Could They Deliver?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(5), pages 1211-1218.
    25. Katsushi Imai & Raghav Gaiha & Ganesh Thapa, 2008. "Transmission of World Commodity Prices to Domestic Commodity Prices in India and China," Global Development Institute Working Paper Series 4508, GDI, The University of Manchester.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajanovic, Amela & Haas, Reinhard, 2014. "On the future prospects and limits of biofuels in Brazil, the US and EU," Applied Energy, Elsevier, vol. 135(C), pages 730-737.
    2. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    3. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    4. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    5. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    6. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    7. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    8. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    9. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    10. Liu, Yunyun & Zhang, Yu & Xu, Jingliang & Sun, Yongming & Yuan, Zhenhong & Xie, Jun, 2015. "Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse," Applied Energy, Elsevier, vol. 157(C), pages 517-522.
    11. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    12. Xinru Han & Yongfu Chen & Xiudong Wang, 2022. "Impacts of China’s bioethanol policy on the global maize market: a partial equilibrium analysis to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 147-163, February.
    13. Koizumi, Tatsuji, 2013. "Biofuel and food security in China and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 102-109.
    14. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Biofuels and the poor: Global impact pathways of biofuels on agricultural markets," Food Policy, Elsevier, vol. 37(4), pages 439-451.
    2. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    3. Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
    4. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    5. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    6. Virginie Doumax & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, tax policies and oil price: insights from a dynamic CGE model," EcoMod2013 5417, EcoMod.
    7. Virginie Doumax-Tagliavini & Cristina Sarasa, University of Zaragoza, 2014. "Biofuels, technological change and uncertainty: Evidence from France," EcoMod2014 6941, EcoMod.
    8. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    9. Ali, Tariq & Huang, Jikun & Yang, Jun, 2013. "Impact assessment of global and national biofuels developments on agriculture in Pakistan," Applied Energy, Elsevier, vol. 104(C), pages 466-474.
    10. Devarajan, Shantayanan & Go, Delfin S. & Page, John & Robinson, Sherman & Thierfelder, Karen, 2008. "Aid, growth, and real exchange rate dynamics," Policy Research Working Paper Series 4480, The World Bank.
    11. Kolasa, Marcin, 2014. "Real convergence and its illusions," Economic Modelling, Elsevier, vol. 37(C), pages 79-88.
    12. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    14. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    15. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    16. Banse, Martin & Rothe, Andrea & Tabeau, Andrzej & Meijl, Hans van & Woltjer, Geert, 2013. "Will improved access to capital dampen the need for more agricultural land? A CGE analysis of agricultural capital markets and world-wide biofuel policies," Working papers 155706, Factor Markets, Centre for European Policy Studies.
    17. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    18. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    19. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    20. Santamaría, Marta & Azqueta, Diego, 2015. "Promoting biofuels use in Spain: A cost-benefit analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1415-1424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:246-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.