IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v34y2015i1p1-19.html
   My bibliography  Save this article

Learning from Experience, Simply

Author

Listed:
  • Song Lin

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Juanjuan Zhang

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • John R. Hauser

    (MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

There is substantial academic interest in modeling consumer experiential learning. However, (approximately) optimal solutions to forward-looking experiential learning problems are complex, limiting their behavioral plausibility and empirical feasibility. We propose that consumers use cognitively simple heuristic strategies. We explore one viable heuristic—index strategies—and demonstrate that they are intuitive, tractable, and plausible. Index strategies are much simpler for consumers to use but provide close-to-optimal utility. They also avoid exponential growth in computational complexity, enabling researchers to study learning models in more complex situations.Well-defined index strategies depend on a structural property called indexability. We prove the indexability of a canonical forward-looking experiential learning model in which consumers learn brand quality while facing random utility shocks. Following an index strategy, consumers develop an index for each brand separately and choose the brand with the highest index. Using synthetic data, we demonstrate that an index strategy achieves nearly optimal utility at substantially lower computational costs. Using IRI data for diapers, we find that an index strategy performs as well as an approximately optimal solution and better than myopic learning. We extend the analysis to incorporate risk aversion, other cognitively simple heuristics, heterogeneous foresight, and an alternative specification of brands.

Suggested Citation

  • Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
  • Handle: RePEc:inm:ormksc:v:34:y:2015:i:1:p:1-19
    DOI: 10.1287/mksc.2014.0868
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2014.0868
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2014.0868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David I. Laibson & Xavier Gabaix, 2000. "A Boundedly Rational Decision Algorithm," American Economic Review, American Economic Association, vol. 90(2), pages 433-438, May.
    2. Glen L. Urban & Guilherme (Gui) Liberali & Erin MacDonald & Robert Bordley & John R. Hauser, 2014. "Morphing Banner Advertising," Marketing Science, INFORMS, vol. 33(1), pages 27-46, January.
    3. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    4. Miller, Robert A, 1984. "Job Matching and Occupational Choice," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 1086-1120, December.
    5. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    6. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    7. Sridhar Narayanan & Puneet Manchanda, 2009. "Heterogeneous Learning and the Targeting of Marketing Communication for New Products," Marketing Science, INFORMS, vol. 28(3), pages 424-441, 05-06.
    8. Pradeep Chintagunta & Renna Jiang & Ginger Jin, 2009. "Information, learning, and drug diffusion: The case of Cox-2 inhibitors," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 399-443, December.
    9. John Rust, 1996. "Dealing with the Complexity of Economic Calculations," Computational Economics 9610002, University Library of Munich, Germany, revised 21 Oct 1997.
    10. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    11. Andrew T. Ching & Masakazu Ishihara, 2012. "Measuring the Informative and Persuasive Roles of Detailing on Prescribing Decisions," Management Science, INFORMS, vol. 58(7), pages 1374-1387, July.
    12. repec:cup:judgdm:v:5:y:2010:i:4:p:207-215 is not listed on IDEAS
    13. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    14. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    15. Laura Martignon & Ulrich Hoffrage, 2002. "Fast, frugal, and fit: Simple heuristics for paired comparison," Theory and Decision, Springer, vol. 52(1), pages 29-71, February.
    16. Imai, Susumu & Jain, Neelam & Ching, Andrew, 2006. "Bayesian Estimation of Dynamic Discrete Choice Models," Queen's Economics Department Working Papers 273594, Queen's University - Department of Economics.
    17. Andrew Ching & Masakazu Ishihara, 2010. "The effects of detailing on prescribing decisions under quality uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 8(2), pages 123-165, June.
    18. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    19. Christos H. Papadimitriou & John N. Tsitsiklis, 1999. "The Complexity of Optimal Queuing Network Control," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 293-305, May.
    20. Andrew T. Ching, 2010. "A Dynamic Oligopoly Structural Model For The Prescription Drug Market After Patent Expiration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 1175-1207, November.
    21. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    22. Dimitris Bertsimas & José Niño-Mora, 2000. "Restless Bandits, Linear Programming Relaxations, and a Primal-Dual Index Heuristic," Operations Research, INFORMS, vol. 48(1), pages 80-90, February.
    23. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    24. Narasimhan, Chakravarthi, 1988. "Competitive Promotional Strategies," The Journal of Business, University of Chicago Press, vol. 61(4), pages 427-449, October.
    25. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    26. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    27. Jovanovic, Boyan, 1979. "Job Matching and the Theory of Turnover," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 972-990, October.
    28. Shugan, Steven M, 1980. "The Cost of Thinking," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 7(2), pages 99-111, Se.
    29. Banks, Jeffrey S & Sundaram, Rangarajan K, 1994. "Switching Costs and the Gittins Index," Econometrica, Econometric Society, vol. 62(3), pages 687-694, May.
    30. Hauser, John R & Urban, Glen L, 1986. "The Value Priority Hypotheses for Consumer Budget Plans," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(4), pages 446-462, March.
    31. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    32. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    33. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    34. Pradeep Chintagunta & Tülin Erdem & Peter E. Rossi & Michel Wedel, 2006. "Structural Modeling in Marketing: Review and Assessment," Marketing Science, INFORMS, vol. 25(6), pages 604-616, 11-12.
    35. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    36. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    37. John R. Hauser, 1978. "Testing the Accuracy, Usefulness, and Significance of Probabilistic Choice Models: An Information-Theoretic Approach," Operations Research, INFORMS, vol. 26(3), pages 406-421, June.
    38. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    39. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
    40. Paul A. Samuelson, 1937. "A Note on Measurement of Utility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 4(2), pages 155-161.
    41. Bart J. Bronnenberg & Michael W. Kruger & Carl F. Mela, 2008. "—The IRI Marketing Data Set," Marketing Science, INFORMS, vol. 27(4), pages 745-748, 07-08.
    42. Tülin Erdem & Michael Keane & T. Öncü & Judi Strebel, 2005. "Learning About Computers: An Analysis of Information Search and Technology Choice," Quantitative Marketing and Economics (QME), Springer, vol. 3(3), pages 207-247, September.
    43. Nitin Mehta & Xinlei (Jack) Chen & Om Narasimhan, 2008. "Informing, Transforming, and Persuading: Disentangling the Multiple Effects of Advertising on Brand Choice Decisions," Marketing Science, INFORMS, vol. 27(3), pages 334-355, 05-06.
    44. Xavier Gabaix & David Laibson & Guillermo Moloche & Stephen Weinberg, 2006. "Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model," American Economic Review, American Economic Association, vol. 96(4), pages 1043-1068, September.
    45. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    46. Jian Ni & Scott A. Neslin & Baohong Sun, 2012. "Database Submission--The ISMS Durable Goods Data Sets," Marketing Science, INFORMS, vol. 31(6), pages 1008-1013, November.
    47. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    48. Eric J. Johnson & John W. Payne, 1985. "Effort and Accuracy in Choice," Management Science, INFORMS, vol. 31(4), pages 395-414, April.
    49. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    50. Karsten Hansen & Vishal Singh & Pradeep Chintagunta, 2006. "Understanding Store-Brand Purchase Behavior Across Categories," Marketing Science, INFORMS, vol. 25(1), pages 75-90, 01-02.
    51. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    52. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    2. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    3. José Niño-Mora, 2020. "Fast Two-Stage Computation of an Index Policy for Multi-Armed Bandits with Setup Delays," Mathematics, MDPI, vol. 9(1), pages 1-36, December.
    4. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    5. S. Sriram & Pradeep K. Chintagunta & Puneet Manchanda, 2015. "Service Quality Variability and Termination Behavior," Management Science, INFORMS, vol. 61(11), pages 2739-2759, November.
    6. Onesun Steve Yoo & Tingliang Huang & Kenan Arifoğlu, 2021. "A Theoretical Analysis of the Lean Start-up Method," Marketing Science, INFORMS, vol. 40(3), pages 395-412, May.
    7. Alina Ferecatu & Arnaud De Bruyn, 2022. "Understanding Managers’ Trade-Offs Between Exploration and Exploitation," Marketing Science, INFORMS, vol. 41(1), pages 139-165, January.
    8. Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
    9. Shan Huang & Sinan Aral & Yu Jeffrey Hu & Erik Brynjolfsson, 2020. "Social Advertising Effectiveness Across Products: A Large-Scale Field Experiment," Marketing Science, INFORMS, vol. 39(6), pages 1142-1165, November.
    10. Shunyao Yan & Klaus M. Miller & Bernd Skiera, 2020. "How Does the Adoption of Ad Blockers Affect News Consumption?," Papers 2005.06840, arXiv.org, revised Aug 2021.
    11. Arjen van Lin & Els Gijsbrechts, 2019. "“Hello Jumbo!” The Spatio-Temporal Rollout and Traffic to a New Grocery Chain After Acquisition," Management Science, INFORMS, vol. 67(5), pages 2388-2411, May.
    12. T. Tony Ke & Song Lin, 2020. "Informational Complementarity," Management Science, INFORMS, vol. 66(8), pages 3699-3716, August.
    13. Somayeh Moazeni & Boris Defourny & Monika J. Wilczak, 2020. "Sequential Learning in Designing Marketing Campaigns for Market Entry," Management Science, INFORMS, vol. 66(9), pages 4226-4245, September.
    14. John R. Hauser, 2017. "Phenomena, theory, application, data, and methods all have impact," Journal of the Academy of Marketing Science, Springer, vol. 45(1), pages 7-9, January.
    15. Jeanine Miklós-Thal & Michael Raith & Matthew Selove, 2018. "What Are We Really Good At? Product Strategy with Uncertain Capabilities," Marketing Science, INFORMS, vol. 37(2), pages 294-309, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    3. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    4. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    5. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    6. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    7. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    8. Szymanowski, M.G., 2009. "Consumption-based learning about brand quality : Essays on how private labels share and borrow reputation," Other publications TiSEM b12825d8-5e21-4437-adda-b, Tilburg University, School of Economics and Management.
    9. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    10. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    11. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    12. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    13. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    14. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
    15. Jialie Chen & Vithala R. Rao, 2020. "A Dynamic Model of Rational Addiction with Stockpiling and Learning: An Empirical Examination of E-cigarettes," Management Science, INFORMS, vol. 66(12), pages 5886-5905, December.
    16. Anindya Ghose & Sang Pil Han, 2009. "A Dynamic Structural Model of User Learning in Mobile Media Content," Working Papers 09-24, NET Institute, revised Oct 2009.
    17. Guofang Huang & Matthew Shum & Wei Tan, 2019. "Is pharmaceutical detailing informative? Evidence from contraindicated drug prescriptions," Quantitative Marketing and Economics (QME), Springer, vol. 17(2), pages 135-160, June.
    18. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    19. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    20. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:34:y:2015:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.